scispace - formally typeset
Search or ask a question
Author

Menghua Wang

Bio: Menghua Wang is an academic researcher from National Oceanic and Atmospheric Administration. The author has contributed to research in topics: Ocean color & Visible Infrared Imaging Radiometer Suite. The author has an hindex of 53, co-authored 199 publications receiving 10479 citations. Previous affiliations of Menghua Wang include Colorado State University & University of California, Santa Barbara.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown, using aerosol models, that certain assumptions regarding the spectral behavior of the aerosol reflectance employed in the standard CZCS correction algorithm are not valid over the spectral range encompassing both the visible and the NIR.
Abstract: The second generation of ocean-color-analyzing instruments requires more accurate atmospheric correction than does the Coastal Zone Color Scanner (CZCS), if one is to utilize fully their increased radiometric sensitivity. Unlike the CZCS, the new instruments possess bands in the near infrared (NIR) that are solely for aiding atmospheric correction. We show, using aerosol models, that certain assumptions regarding the spectral behavior of the aerosol reflectance employed in the standard CZCS correction algorithm are not valid over the spectral range encompassing both the visible and the NIR. Furthermore, we show that multiple-scattering effects on the algorithm depend significantly on the aerosol model. Following these observations, we propose an algorithm that utilizes the NIR bands for atmospheric correction to the required accuracy. Examples of the dependence of the error on the aerosol model, the turbidity of the atmosphere, and surface roughness (waves) are provided. The error in the retrieved phytoplankton-pigment concentration (the principal product of ocean-color sensors) induced by errors in the atmospheric correction are shown to be <20% in approximately 90% of the cases examined. Finally, the aerosol thickness (τ(α)) is estimated through a simple extension of the correction algorithm. Simulations suggest that the error in the recovered value of τ(α) should be ≲ 10%.

1,609 citations

Journal ArticleDOI
TL;DR: The effects of nonzero NIR reflectance must be included in the correction of satellite ocean color imagery, particularly for turbid coastal waters.
Abstract: The assumption that values of water-leaving radiance in the near-infrared (NIR) are negligible enable aerosol radiative properties to be easily determined in the correction of satellite ocean color imagery. This is referred to as the black pixel assumption. We examine the implications of the black pixel assumption using a simple bio-optical model for the NIR water-leaving reflectance [rho(w)(lambda(NIR))](N). In productive waters [chlorophyll (Chl) concentration >2 mg m(-3)], estimates of [rho(w)(lambda(NIR))](N) are several orders of magnitude larger than those expected for pure seawater. These large values of [rho(w)(lambda(NIR))](N) result in an overcorrection of atmospheric effects for retrievals of water-leaving reflectance that are most pronounced in the violet and blue spectral region. The overcorrection increases dramatically with Chl, reducing the true water-leaving radiance by roughly 75% when Chl is equal to 5 mg m(-3). Relaxing the black pixel assumption in the correction of Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) satellite ocean color imagery provides significant improvements in Chl and water-leaving reflectance retrievals when Chl values are greater than 2 mg m(-3). Improvements in the present modeling of [rho(w)(lambda(NIR))](N) are considered, particularly for turbid coastal waters. However, this research shows that the effects of nonzero NIR reflectance must be included in the correction of satellite ocean color imagery.

545 citations

Book
02 Aug 2013
TL;DR: The effort to resolve data quality issues and improve on the initial data evaluation methodologies of the SeaWiFS Project was an extensive one as discussed by the authors, which resulted, to date, in three major reprocessings of the entire data set where each reprocessing addressed the data quality issue that could be identified up to the time of the reproprocessing.
Abstract: The effort to resolve data quality issues and improve on the initial data evaluation methodologies of the SeaWiFS Project was an extensive one. These evaluations have resulted, to date, in three major reprocessings of the entire data set where each reprocessing addressed the data quality issues that could be identified up to the time of the reprocessing. Three volumes of the SeaWiFS Postlaunch Technical Report Series (Volumes 9, 10, and 11) are needed to document the improvements implemented since launch. Volume 10 continues the sequential presentation of postlaunch data analysis and algorithm descriptions begun in Volume 9. Chapter 1 of Volume 10 describes an absorbing aerosol index, similar to that produced by the Total Ozone Mapping Spectrometer (TOMS) Project, which is used to flag pixels contaminated by absorbing aerosols, such as, dust and smoke. Chapter 2 discusses the algorithm being used to remove SeaWiFS out-of-band radiance from the water-leaving radiances. Chapter 3 provides an itemization of all significant changes in the processing algorithms for each of the first three reprocessings. Chapter 4 shows the time series of global clear water and deep-water (depths greater than 1,000m) bio-optical and atmospheric properties (normalized water-leaving radiances, chlorophyll, atmospheric optical depth, etc.) based on the eight-day composites as a check on the sensor calibration stability. Chapter 5 examines the variation in the derived products with scan angle using high resolution data around Hawaii to test for residual scan modulation effects and atmospheric correction biases. Chapter 6 provides a methodology for evaluating the atmospheric correction algorithm and atmospheric derived products using ground-based observations. Similarly, Chapter 7 presents match-up comparisons of coincident satellite and in situ data to determine the accuracy of the water-leaving radiances, chlorophyll a, and K(490) products.

518 citations

Journal ArticleDOI
TL;DR: With the NIR-SWIR combined approach for the MODIS ocean color data processing, good quality ocean color products can be derived both in clear (open) oceans as well as for turbid coastal waters.
Abstract: A method of ocean color data processing using the combined near-infrared (NIR) and shortwave infrared (SWIR) bands for atmospheric correction for the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua is proposed. MODIS-Aqua has been producing the high quality ocean color products in the open oceans, but there are still some significant errors in the derived products in the coastal regions. With the proposed NIR-SWIR combined algorithm, MODIS ocean color data can be processed using the standard (NIR) atmospheric correction algorithm for the open oceans, whereas for the turbid waters in the coastal region the SWIR atmospheric correction algorithm can be executed. The turbid water index developed by Shi and Wang (2007) (Remote Sens. Environ. 110, 149-161 (2007)) is computed prior to the atmospheric correction for the identification of the productive and/or turbid waters where the SWIR algorithm can be operated. For non-turbid ocean waters (discriminated using the turbid water index criterion), the MODIS data are still processed using the standard (NIR) algorithm. The NIR-SWIR combined algorithm has been tested and evaluated. Two examples from MODIS-Aqua measurements along the U.S. and China east coast regions show improved ocean color products with the new approach. In particular, there are no obvious data discontinuities between using the NIR and SWIR methods. Therefore, with the NIR-SWIR combined approach for the MODIS ocean color data processing, good quality ocean color products can be derived both in clear (open) oceans as well as for turbid coastal waters.

460 citations

Journal ArticleDOI
TL;DR: In this paper, the authors systematically review the algorithms developed for these sensors in terms of four key elements that influence the quality of passive satellite aerosol retrieval: calibration, cloud screening, classification of aerosol types, and surface effects.
Abstract: . As a result of increasing attention paid to aerosols in climate studies, numerous global satellite aerosol products have been generated. Aerosol parameters and underlining physical processes are now incorporated in many general circulation models (GCMs) in order to account for their direct and indirect effects on the earth's climate, through their interactions with the energy and water cycles. There exists, however, an outstanding problem that these satellite products have substantial discrepancies, that must be lowered substantially for narrowing the range of the estimates of aerosol's climate effects. In this paper, numerous key uncertain factors in the retrieval of aerosol optical depth (AOD) are articulated for some widely used and relatively long satellite aerosol products including the AVHRR, TOMS, MODIS, MISR, and SeaWiFS. We systematically review the algorithms developed for these sensors in terms of four key elements that influence the quality of passive satellite aerosol retrieval: calibration, cloud screening, classification of aerosol types, and surface effects. To gain further insights into these uncertain factors, the NOAA AVHRR data are employed to conduct various tests, which help estimate the ranges of uncertainties incurred by each of the factors. At the end, recommendations are made to cope with these issues and to produce a consistent and unified aerosol database of high quality for both environment monitoring and climate studies.

300 citations


Cited by
More filters
Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
TL;DR: It is found that two-thirds of the global population (4.0 billion people) live under conditions of severe water scarcity at least 1 month of the year, and nearly half of those people live in India and China.
Abstract: Freshwater scarcity is increasingly perceived as a global systemic risk. Previous global water scarcity assessments, measuring water scarcity annually, have underestimated experienced water scarcity by failing to capture the seasonal fluctuations in water consumption and availability. We assess blue water scarcity globally at a high spatial resolution on a monthly basis. We find that two-thirds of the global population (4.0 billion people) live under conditions of severe water scarcity at least 1 month of the year. Nearly half of those people live in India and China. Half a billion people in the world face severe water scarcity all year round. Putting caps to water consumption by river basin, increasing water-use efficiencies, and better sharing of the limited freshwater resources will be key in reducing the threat posed by water scarcity on biodiversity and human welfare.

2,944 citations

Journal ArticleDOI
TL;DR: The developed algorithm is adapted for the retrieval of aerosol properties from measurements made by ground-based Sun-sky scanning radiometers used in the Aerosol Robotic Network (AERONET) and allows a choice of normal or lognormal noise assumptions.
Abstract: The problem of deriving a complete set of aerosol optical properties from Sun and sky radiance measurements is discussed. Algorithm development is focused on improving aerosol retrievals by means of including a detailed statistical optimization of the influence of noise in the inversion procedure. The methodological aspects of such an optimization are discussed in detail and revised according to both modern findings in inversion theory and practical experience in remote sensing. Accordingly, the proposed inversion algorithm is built on the principles of statistical estimation: the spectral radiances and various a priori constraints on aerosol characteristics are considered as multisource data that are known with predetermined accuracy. The inversion is designed as a search for the best fit of all input data by a theoretical model that takes into account the different levels of accuracy of the fitted data. The algorithm allows a choice of normal or lognormal noise assumptions. The multivariable fitting is implemented by a stable numerical procedure combining matrix inversion and univariant relaxation. The theoretical inversion scheme has been realized in the advanced algorithm retrieving aerosol size distribution together with complex refractive index from the spectral measurements of direct and diffuse radiation. The aerosol particles are modeled as homogeneous spheres. The atmospheric radiative transfer modeling is implemented with well-established publicly available radiative transfer codes. The retrieved refractive indices can be wavelength dependent; however, the extended smoothness constraints are applied to its spectral dependence (and indirectly through smoothness constraints on retrieved size distributions). The positive effects of statistical optimization on the retrieval results as well as the importance of applying a priori constraints are discussed in detail for the retrieval of both aerosol size distribution and complex refractive index. The developed algorithm is adapted for the retrieval of aerosol properties from measurements made by ground-based Sun-sky scanning radiometers used in the Aerosol Robotic Network (AERONET). The results of numerical tests together with examples of experimental data inversions are presented.

2,122 citations

Journal ArticleDOI
TL;DR: The various algorithms being used for the remote sensing of cloud properties from MODIS data with an emphasis on the pixel-level retrievals (referred to as Level-2 products), with 1-km or 5-km spatial resolution at nadir are described.
Abstract: The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of five instruments aboard the Terra Earth Observing System (EOS) platform launched in December 1999. After achieving final orbit, MODIS began Earth observations in late February 2000 and has been acquiring data since that time. The instrument is also being flown on the Aqua spacecraft, launched in May 2002. A comprehensive set of remote sensing algorithms for cloud detection and the retrieval of cloud physical and optical properties have been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various algorithms being used for the remote sensing of cloud properties from MODIS data with an emphasis on the pixel-level retrievals (referred to as Level-2 products), with 1-km or 5-km spatial resolution at nadir. An example of each Level-2 cloud product from a common data granule (5 min of data) off the coast of South America will be discussed. Future efforts will also be mentioned. Relevant points related to the global gridded statistics products (Level-3) are highlighted though additional details are given in an accompanying paper in this issue.

1,636 citations