scispace - formally typeset
Search or ask a question
Author

Mengjie Chen

Bio: Mengjie Chen is an academic researcher from University of Chicago. The author has contributed to research in topics: Medicine & Biology. The author has an hindex of 23, co-authored 64 publications receiving 1801 citations. Previous affiliations of Mengjie Chen include Yale University & University of North Carolina at Chapel Hill.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
Catherine A. Brownstein1, Alan H. Beggs1, Nils Homer, Barry Merriman2  +207 moreInstitutions (53)
TL;DR: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases and reveals a general convergence of practices on most elements of the analysis and interpretation process.
Abstract: Background There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance.

429 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the primary piRNAs biogenesis pathway involves 3′→5′ processing of 31–37 nt intermediates and that Tdrkh promotes this final step of piRNA biogenesis but not the ping‐pong cycle, shed light on mechanisms underlying primary pi RNA biogenesis.
Abstract: Piwi proteins and Piwi‐interacting RNAs (piRNAs) repress transposition, regulate translation, and guide epigenetic programming in the germline. Here, we show that an evolutionarily conserved Tudor and KH domain‐containing protein, Tdrkh (a.k.a. Tdrd2), is required for spermatogenesis and involved in piRNA biogenesis. Tdrkh partners with Miwi and Miwi2 via symmetrically dimethylated arginine residues in Miwi and Miwi2. Tdrkh is a mitochondrial protein often juxtaposed to pi‐bodies and piP‐bodies and is required for Tdrd1 cytoplasmic localization and Miwi2 nuclear localization. Tdrkh mutants display meiotic arrest at the zygotene stage, attenuate methylation of Line1 DNA, and upregulate Line1 RNA and protein, without inducing apoptosis. Furthermore, Tdrkh mutants have severely reduced levels of mature piRNAs but accumulate a distinct population of 1′U‐containing, 2′O‐methylated 31–37 nt RNAs that largely complement the missing mature piRNAs. Our results demonstrate that the primary piRNA biogenesis pathway involves 3′→5′ processing of 31–37 nt intermediates and that Tdrkh promotes this final step of piRNA biogenesis but not the ping‐pong cycle. These results shed light on mechanisms underlying primary piRNA biogenesis, an area in which information is conspicuously absent.

159 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors used whole-genome sequencing of DNA and RNA in 94 Chinese individuals with oesophageal squamous-cell carcinoma (ESCC) to identify six mutational signatures (E1-E6), and Signature E4 is unique in ESCC linked to alcohol intake and genetic variants in alcohol-metabolizing enzymes.
Abstract: Approximately half of the world's 500,000 new oesophageal squamous-cell carcinoma (ESCC) cases each year occur in China. Here, we show whole-genome sequencing of DNA and RNA in 94 Chinese individuals with ESCC. We identify six mutational signatures (E1-E6), and Signature E4 is unique in ESCC linked to alcohol intake and genetic variants in alcohol-metabolizing enzymes. We discover significantly recurrent mutations in 20 protein-coding genes, 4 long non-coding RNAs and 10 untranslational regions. Functional analyses show six genes that have recurrent copy-number variants in three squamous-cell carcinomas (oesophageal, head and neck and lung) significantly promote cancer cell proliferation, migration and invasion. The most frequently affected genes by structural variation are LRP1B and TTC28. The aberrant cell cycle and PI3K-AKT pathways seem critical in ESCC. These results establish a comprehensive genomic landscape of ESCC and provide potential targets for precision treatment and prevention of the cancer.

154 citations

Journal ArticleDOI
TL;DR: A new concept called matrix depth is defined and a robust covariance matrix estimator is proposed that is shown to achieve minimax optimal rate under Huber's $\epsilon$-contamination model for estimating covariance/scatter matrices with various structures including bandedness and sparsity.
Abstract: Covariance matrix estimation is one of the most important problems in statistics. To accommodate the complexity of modern datasets, it is desired to have estimation procedures that not only can incorporate the structural assumptions of covariance matrices, but are also robust to outliers from arbitrary sources. In this paper, we define a new concept called matrix depth and then propose a robust covariance matrix estimator by maximizing the empirical depth function. The proposed estimator is shown to achieve minimax optimal rate under Huber’s $\varepsilon$-contamination model for estimating covariance/scatter matrices with various structures including bandedness and sparsity.

146 citations

Journal ArticleDOI
29 Jul 2019
TL;DR: In this article, the m6A landscape segregates human type 2 diabetes (T2D) islets from controls significantly better than the transcriptome and that m6a is vital for β-cell biology.
Abstract: The regulation of islet cell biology is critical for glucose homeostasis1.N6 -methyladenosine (m6A) is the most abundant internal messenger RNA (mRNA) modification in mammals2. Here we report that the m6A landscape segregates human type 2 diabetes (T2D) islets from controls significantly better than the transcriptome and that m6A is vital for β-cell biology. m6A-sequencing in human T2D islets reveals several hypomethylated transcripts involved in cell-cycle progression, insulin secretion, and the Insulin/IGF1-AKT-PDX1 pathway. Depletion of m6A levels in EndoC-βH1 induces cell-cycle arrest and impairs insulin secretion by decreasing AKT phosphorylation and PDX1 protein levels. β-cell specific Mettl14 knock-out mice, which display reduced m6A levels, mimic the islet phenotype in human T2D with early diabetes onset and mortality due to decreased β-cell proliferation and insulin degranulation. Our data underscore the significance of RNA methylation in regulating human β-cell biology, and provide a rationale for potential therapeutic targeting of m6A modulators to preserve β-cell survival and function in diabetes.

128 citations


Cited by
More filters
01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss commonly used high-throughput sequencing platforms, the growing array of sequencing assays developed around them, as well as the challenges facing current sequencing platforms and their clinical application.

954 citations

01 Jan 2013
TL;DR: In this article, a peroxidase-based method was used to identify 495 proteins within the human mitochondrial matrix, including 31 proteins not previously linked to mitochondria, and the labeling was exceptionally specific and distinguished between inner membrane proteins facing the matrix versus the intermembrane space.
Abstract: Microscopy and mass spectrometry (MS) are complementary techniques: The former provides spatiotemporal information in living cells, but only for a handful of recombinant proteins at a time, whereas the latter can detect thousands of endogenous proteins simultaneously, but only in lysed samples. Here, we introduce technology that combines these strengths by offering spatially and temporally resolved proteomic maps of endogenous proteins within living cells. Our method relies on a genetically targetable peroxidase enzyme that biotinylates nearby proteins, which are subsequently purified and identified by MS. We used this approach to identify 495 proteins within the human mitochondrial matrix, including 31 not previously linked to mitochondria. The labeling was exceptionally specific and distinguished between inner membrane proteins facing the matrix versus the intermembrane space (IMS). Several proteins previously thought to reside in the IMS or outer membrane, including protoporphyrinogen oxidase, were reassigned to the matrix by our proteomic data and confirmed by electron microscopy. The specificity of peroxidase-mediated proteomic mapping in live cells, combined with its ease of use, offers biologists a powerful tool for understanding the molecular composition of living cells.

769 citations

Journal ArticleDOI
23 Nov 2018-Science
TL;DR: Targeted gene sequencing of normal esophageal epithelium from nine human donors found strong positive selection of clones carrying mutations in 14 cancer genes, with tens to hundreds of clones per square centimeter in middle-aged and elderly donors.
Abstract: The extent to which cells in normal tissues accumulate mutations throughout life is poorly understood. Some mutant cells expand into clones that can be detected by genome sequencing. We mapped mutant clones in normal esophageal epithelium from nine donors (age range, 20 to 75 years). Somatic mutations accumulated with age and were caused mainly by intrinsic mutational processes. We found strong positive selection of clones carrying mutations in 14 cancer genes, with tens to hundreds of clones per square centimeter. In middle-aged and elderly donors, clones with cancer-associated mutations covered much of the epithelium, with NOTCH1 and TP53 mutations affecting 12 to 80% and 2 to 37% of cells, respectively. Unexpectedly, the prevalence of NOTCH1 mutations in normal esophagus was several times higher than in esophageal cancers. These findings have implications for our understanding of cancer and aging.

736 citations