scispace - formally typeset
Search or ask a question
Author

Mengqing Xiao

Bio: Mengqing Xiao is an academic researcher from Central South University. The author has contributed to research in topics: Bladder cancer & Cancer. The author has an hindex of 7, co-authored 22 publications receiving 114 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors used Lasso (Least Absolute Shrinkage and Selection Operator) Cox regression to establish an eight-m6A-regulator prognostic model in the TCGA dataset, and the results showed that the model-based high risk group was closely correlated with poor overall survival (OS) compared with the low risk group.
Abstract: Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a high rate of mortality and recurrence. N6-methyladenosine methylation (m6A) is the most common modification to affect cancer development, but to date, the potential role of m6A regulators in ACC prognosis is not well understood. In this study, we systematically analyzed 21 m6A regulators in ACC samples from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. We identified three m6A modification patterns with different clinical outcomes and discovered a significant relationship between diverse m6A clusters and the tumor immune microenvironment (immune cell types and ESTIMATE algorithm). Additionally, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed that the m6A clusters were strongly associated with immune infiltration in the ACC. Next, to further explore the m6A prognostic signatures in ACC, we implemented Lasso (Least Absolute Shrinkage and Selection Operator) Cox regression to establish an eight-m6A-regulator prognostic model in the TCGA dataset, and the results showed that the model-based high-risk group was closely correlated with poor overall survival (OS) compared with the low-risk group. Subsequently, we validated the key modifications in the GEO datasets and found that high HNRNPA2B1 expression resulted in poor OS and event-free survival (EFS) in ACC. Moreover, to further decipher the molecular mechanisms, we constructed a competing endogenous RNA (ceRNA) network based on HNRNPA2B1, which consists of 12 long noncoding RNAs (lncRNAs) and 1 microRNA (miRNA). In conclusion, our findings indicate the potential role of m6A modification in ACC, providing novel insights into ACC prognosis and guiding effective immunotherapy.

43 citations

Journal ArticleDOI
TL;DR: It is revealed that natural halloysite nanotube–assisted delivery of an active small interfering RNA (siRNA) targeting receptor-interacting protein kinase 4 (RIPK4) efficiently silenced its expression to treat bladder cancer.
Abstract: RNA interference (RNAi) technology can specifically silence the expression of a target gene and has emerged as a promising therapeutic method to treat cancer. In the present study, we showed that natural halloysite nanotube (HNT)–assisted delivery of an active small interfering RNA (siRNA) targeting receptor-interacting protein kinase 4 (RIPK4) efficiently silenced its expression to treat bladder cancer. The HNTs/siRNA complex increased the serum stability of the siRNA, increased its circulation lifetime in blood, and promoted the cellular uptake and tumor accumulation of the siRNA. The siRNA markedly down-regulated RIPK4 expression in bladder cancer cells and bladder tumors, thus inhibiting tumorigenesis and progression in three bladder tumor models (a subcutaneous model, an in situ bladder tumor model, and a lung metastasis model), with no adverse effects. Thus, we revealed a simple but effective method to inhibit bladder cancer using RIPK4 silencing, indicating a promising therapeutic method for bladder cancer.

40 citations

Journal ArticleDOI
04 Jul 2019-Oncogene
TL;DR: Zhang et al. as discussed by the authors showed that the MRVI1-AS1/ATF3 signaling pathway can increase paclitaxel chemosensitivity by modulating the Hippo-TAZ signaling pathway.
Abstract: Long non-coding RNA (lncRNA) plays an important role in malignant tumor occurrence, development, and chemoresistance, but the mechanism of how they affect nasopharyngeal cancer (NPC) paclitaxel chemosensitivity is unclear. In this study, lncRNA array of CNE-1 and HNE-2 paclitaxel-resistant cells and their parental strains revealed that the paclitaxel-resistant strains had significantly lower MRVI1-AS1 (murine retrovirus integration site 1 homolog antisense RNA 1) expression than the parental strains, and that MRVI1-AS1 overexpression in vitro and in vivo increased paclitaxel chemosensitivity. Further, MRVI1-AS1 upregulated ATF3 (activating transcription factor 3) by simultaneously inhibiting miR-513a-5p (microRNA-513a-5p) and miR-27b-3p expression levels to increase NPC paclitaxel chemosensitivity. Chromatin immunoprecipitation and quantitative real-time PCR showed that ATF3 could feed-back MRVI1-AS1 regulation positively. Furthermore, MRVI1-AS1 and ATF3 could form a positive feedback loop, which promoted the expression of RASSF1 (Ras association domain family member 1), a Hippo-TAZ (tafazzin) signaling pathway regulatory factor, thereby inhibiting TAZ expression. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide) assay and flow cytometry showed that the decreased TAZ increased NPC cell paclitaxel chemosensitivity. Overall, the results indicate that the MRVI1-AS1/ATF3 signaling pathway can increase NPC paclitaxel chemosensitivity by modulating the Hippo-TAZ signaling pathway. Therefore, targeting the loop may be a new NPC treatment strategy.

37 citations

Journal ArticleDOI
22 Sep 2021-Oncogene
TL;DR: In this article, the authors identified effective biomarkers for the prediction of immune checkpoint inhibitor treatment responsiveness in bladder cancer patients and provided new immunotherapeutic targets, and constructed a risk prediction model which could stratify patients with bladder cancer and predict patient prognosis and ICB treatment responsiveness.
Abstract: Immune-checkpoint blockade (ICB) has been routinely implemented to treat bladder cancer; however, most patients have little or no clinical benefit. In this study, 348 pretreated metastatic urothelial cancer samples from the IMvigor210 cohort were used to identify important genes significantly associated with CD8+ T effector and immune checkpoint signatures. The immune checkpoint inhibitor score (IMS) scoring system was constructed to predict the immunotherapy responsiveness. Transcriptome analysis confirmed that the high IMS score group had significant immune activation with better prognosis and higher immunotherapy responsiveness, which was a powerful biomarker for predicting the prognosis and responsiveness of ICB. Tumor immune dysfunction and exclusion (TIDE) scores were calculated using 2031 external bladder cancer samples for further validation. We selected the important Hub genes as potential therapeutic targets, and validated the genes using genomic, transcriptomic, immunomic, and other multi-omics methods. In addition, we construct a risk prediction model which could stratify patients with bladder cancer and predict patient prognosis and ICB treatment responsiveness. In conclusion, this study identified effective biomarkers for the prediction of immune checkpoint inhibitor treatment responsiveness in bladder cancer patients and provided new immunotherapeutic targets.

31 citations

Journal ArticleDOI
TL;DR: 15 immune genes were used to construct a new immune-related gene signature that was verified and could be helpful in improving individualized prognosis of patients with bladder cancer.
Abstract: Bladder cancer is one of the most common malignant tumors of the urinary system that seriously threatens the health of a population In recent years, the application of immunotherapy has significantly changed the treatment of bladder cancer, but only some patients can benefit from the treatment with immune-checkpoint inhibitors Many problems are unsolved in the field of bladder cancer immunotherapy, especially in the search for genes that are critical to the level of immune cell infiltration and new effective therapeutic targets We attempted to use bioinformatics analysis to identify immune gene markers related to the prognosis of bladder cancer and to establish a prognostic signature for bladder cancer patients based on their immune gene expression profiles We used univariate Cox proportional hazards regression analysis, the least absolute shrinkage and selection operator (LASSO) Cox regression, and multivariate Cox proportional hazards regression analysis from The Cancer Genome Atlas bladder cancer cohort (TCGA-BLCA) Fifteen genes related to prognosis were screened using the survival analysis, correlation analysis, cancer and adjacent cancer differential expression analysis, and mutation analysis The potential biological role of these genes was determined using survival analysis and principal component analysis (PCA) The receiver operating characteristic (ROC) curve assesses the prognostic value of the predictive signature The gene ontology (GO), Kyoto Encyclopedia of Gene and Genome (KEGG), Gene set enrichment analysis (GSEA), and other methods were used to reveal the differential gene enrichment in the signaling pathways and cellular processes of high- and low-risk groups The single-sample GSEA (ssGSEA) method was used to quantify the infiltration levels of 24 immune cells in the tumor immune microenvironment and these immune genes were found to be closely related to the tumor immune microenvironment In summary, we screened 15 immune genes that were closely related to bladder cancer overall survival (OS) and may be potential prognostic indicators of bladder cancer They may have research and clinical application value in bladder cancer immunotherapy We used 15 immune genes to construct a new immune-related gene signature that was verified and could be helpful in improving individualized prognosis of patients with bladder cancer

27 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is suggested that miR-27b-3p is not only a potential indicator for evaluating efficiency of chemotherapy, but also a valuable therapeutic target for CRC, especially for patients with chemoresistance.
Abstract: Oxaliplatin (OXA) resistance is the major obstacle to the anticancer effects of chemotherapy in colorectal cancer (CRC) patients. MicroRNAs (miRNAs) play an important role in the chemoresistance of various tumors. Our objective is to clarify the underlying mechanism of miRNAs in chemoresistance and provide a potential strategy to improve the response of CRC patients to chemotherapeutics. Methods: MiRNA microarray and Real-time PCR were performed to compare changes in miRNA expression between oxaliplatin-resistant and the parental cells. CCK8, apoptosis assay, immunofluorescence and xenograft studies were used to elucidate the impact of miR-27b-3p on regulating chemoresistance. Luciferase reporter assay and western blot were carried to assess the regulatory role of miR-27b-3p in ATG10 expression. The effects of miR-27b-3p and ATG10 on autophagy were investigated by GFP-LC3 fluorescence microscopy, transmission electron microscopy, and western blot. ChIP assay and luciferase assay were performed to test the c-Myc's occupancy on the miR-27B promoter. Results: We observed that miR-27b-3p expression was significantly downregulated in oxaliplatin-resistant cell lines (SW480-OxR and HCT116-OxR) compared to the corresponding parental cell lines and that miR-27b-3p expression was positively correlated with disease-free survival (DFS) time in colorectal cancer patients. MiR-27b-3p could sensitize colorectal cancer cells to oxaliplatin in vitro and in vivo. Under oxaliplatin treatment, chemoresistant cells showed a higher autophagy level than parental cells. Moreover, we also identified that miR-27b-3p inhibited the expression of ATG10 at the posttranscriptional level, thus inhibiting autophagy. Further study demonstrated that c-Myc can inhibit the expression of miR-27b-3p via binding to the promoter region of miR-27B gene. Conclusions: Our study identifies a novel c-Myc/miR-27b-3p/ATG10 signaling pathway that regulates colorectal cancer chemoresistance. These results suggest that miR-27b-3p is not only a potential indicator for evaluating efficiency of chemotherapy, but also a valuable therapeutic target for CRC, especially for patients with chemoresistance.

83 citations

Journal ArticleDOI
10 Nov 2020-Cancers
TL;DR: This review article seeks to provide information about the common cancers in which taxanes are used and resistance occurs, in order to find targetable mechanisms that can be used to overcome resistance, and identifies gaps in knowledge surrounding taxane resistance.
Abstract: The taxane family of chemotherapy drugs has been used to treat a variety of mostly epithelial-derived tumors and remain the first-line treatment for some cancers. Despite the improved survival time and reduction of tumor size observed in some patients, many have no response to the drugs or develop resistance over time. Taxane resistance is multi-faceted and involves multiple pathways in proliferation, apoptosis, metabolism, and the transport of foreign substances. In this review, we dive deeper into hypothesized resistance mechanisms from research during the last decade, with a focus on the cancer types that use taxanes as first-line treatment but frequently develop resistance to them. Furthermore, we will discuss current clinical inhibitors and those yet to be approved that target key pathways or proteins and aim to reverse resistance in combination with taxanes or individually. Lastly, we will highlight taxane response biomarkers, specific genes with monitored expression and correlated with response to taxanes, mentioning those currently being used and those that should be adopted. The future directions of taxanes involve more personalized approaches to treatment by tailoring drug-inhibitor combinations or alternatives depending on levels of resistance biomarkers. We hope that this review will identify gaps in knowledge surrounding taxane resistance that future research or clinical trials can overcome.

73 citations

Journal ArticleDOI
TL;DR: The efficacy, specificity, and delivery of si RNAs are comprehensively discussed in this review to direct further studies toward using siRNAs and their nanoscale-delivery systems in PCa therapy and perhaps other cancer types.
Abstract: Prostate cancer (PCa) accounts for a high number of deaths in males with no available curative treatments. Patients with PCa are commonly diagnosed in advanced stages due to the lack of symptoms in the early stages. Recently, the research focus was directed toward gene editing in cancer therapy. Small interfering RNA (siRNA) intervention is considered as a powerful tool for gene silencing (knockdown), enabling the suppression of oncogene factors in cancer. This strategy is applied to the treatment of various cancers including PCa. The siRNA can inhibit proliferation and invasion of PCa cells and is able to promote the anti-tumor activity of chemotherapeutic agents. However, the off-target effects of siRNA therapy remarkably reduce its efficacy in PCa therapy. To date, various carriers were designed to improve the delivery of siRNA and, among them, nanoparticles are of importance. Nanoparticles enable the targeted delivery of siRNAs and enhance their potential in the downregulation of target genes of interest. Additionally, nanoparticles can provide a platform for the co-delivery of siRNAs and anti-tumor drugs, resulting in decreased growth and migration of PCa cells. The efficacy, specificity, and delivery of siRNAs are comprehensively discussed in this review to direct further studies toward using siRNAs and their nanoscale-delivery systems in PCa therapy and perhaps other cancer types.

70 citations

Journal ArticleDOI
TL;DR: In this paper, the function of activating transcription factor 3 (ATF3) n GC chemoresistance was investigated and the underlying molecular mechanism was also investigated, which revealed that ATF3 expression was positively related to the overall survival of GC patients.
Abstract: Currently, resistance against cisplatin (DDP) is a frequent problem for the success of advanced gastric carcinoma (GC) chemotherapy. Here, we sought to investigate the function of activating transcription factor 3 (ATF3) n GC chemoresistance. Expression of ATF3 was determined in GC cell lines (MNK45, SGC7901, and BGC823) and cisplatin (DDP)-resistant cells (SGC7901/DDP and BGC823/DDP). Biological informatics was performed to analyze ATF3 expression and prognosis in GC patients. Cisplatin resistance was evaluated. Ferroptosis was detected after ATF3 transfection of cells. The underlying molecular mechanism was also investigated. Transcripts of ATF3 were decreased in GC cells and GC tissues. Kaplan–Meier plotter analysis revealed that ATF3 expression was positively related to the overall survival of GC patients. In particular, lower levels of ATF3 were observed in cisplatin-resistant SGC7901/DDP and BGC823/DDP relative to their parental cells. Notably, ATF3 elevation sensitized cisplatin-resistant cells to cisplatin. Mechanically, compared with parental cells, SGC7901/DDP and BGC823/DDP cells exhibited lower ferroptosis evident by lower ROS, MDA and lipid peroxidation and higher intracellular GSH levels. However, ATF3 elevated ferroptosis in SGC7901/DDP and BGC823/DDP cells. Intriguingly, ATF3 overexpression together with ferroptosis activator erastin or RSL3 treatment further enhanced ferroptosis and cisplatin resistance; however, the ferroptosis suppressor liproxstatin-1 reversed the function of ATF3 in ferroptosis and cisplatin resistance. Additionally, cisplatin-resistant cells exhibited stronger activation of Nrf2/Keap1/xCT signaling relative to parental cells, which was restrained by ATF3 up-regulation. Importantly, restoring Nrf2 signaling overturned ATF3-mediated ferroptosis and cisplatin resistance. ATF3 may sensitize GC cells to cisplatin by induction of ferroptosis via blocking Nrf2/Keap1/xCT signaling, supporting a promising therapeutic approach for overcoming chemoresistance in GC.

54 citations

Journal ArticleDOI
TL;DR: REDD1 is confirmed as an oncogene in BUC, and antagonizing REDD1 could be a potential therapeutic strategy to sensitize BUC cells to paclitaxel.
Abstract: Purpose: Regulated in development and DNA damage response-1 (REDD1) is a stress-related protein and is involved in the progression of cancer. The role and regulatory mechanism of REDD1 in bladder urothelial carcinoma (BUC), however, is yet unidentified.Experimental Design: The expression of REDD1 in BUC was detected by Western blot analysis and immunohistochemistry (IHC). The correlation between REDD1 expression and clinical features in patients with BUC were assessed. The effects of REDD1 on cellular proliferation, apoptosis, autophagy, and paclitaxel sensitivity were determined both in vitro and in vivo Then the targeted-regulating mechanism of REDD1 by miRNAs was explored.Results: Here the significant increase of REDD1 expression is detected in BUC tissue, and REDD1 is first reported as an independent prognostic factor in patients with BUC. Silencing REDD1 expression in T24 and EJ cells decreased cell proliferation, increased apoptosis, and decreased autophagy, whereas the ectopic expression of REDD1 in RT4 and BIU87 cells had the opposite effect. In addition, the REDD1-mediated proliferation, apoptosis, and autophagy are found to be negatively regulated by miR-22 in vitro, which intensify the paclitaxel sensitivity via inhibition of the well-acknowledged REDD1-EEF2K-autophagy axis. AKT/mTOR signaling initially activated or inhibited in response to silencing or enhancing REDD1 expression and then recovered rapidly. Finally, the inhibited REDD1 expression by either RNAi or miR-22 sensitizes BUC tumor cells to paclitaxel in a subcutaneous transplant carcinoma model in vivoConclusions: REDD1 is confirmed as an oncogene in BUC, and antagonizing REDD1 could be a potential therapeutic strategy to sensitize BUC cells to paclitaxel. Clin Cancer Res; 24(2); 445-59. ©2017 AACR.

52 citations