scispace - formally typeset
Search or ask a question
Author

Menno Poot

Bio: Menno Poot is an academic researcher from Technische Universität München. The author has contributed to research in topics: Resonator & Nanotube. The author has an hindex of 31, co-authored 77 publications receiving 5674 citations. Previous affiliations of Menno Poot include Delft University of Technology & Autonomous University of Madrid.


Papers
More filters
Journal ArticleDOI
TL;DR: The elastic deformation of few layers (5 to 25) thick freely suspended MoS2 nanosheets is studied by means of a nanoscopic version of a bending test experiment, carried out with the tip of an atomic force microscope.
Abstract: We study the elastic deformation of few layers (5 to 25) thick freely suspended MoS2 nanosheets by means of a nanoscopic version of a bending test experiment, carried out with the tip of an atomic force microscope. The Young's modulus of these nanosheets is extremely high (E = 0.33 TPa), comparable to that of graphene oxide, and the deflections are reversible up to tens of nanometers.

930 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss different techniques for sensitive position detection and give an overview of the cooling techniques that are being employed, including sideband cooling and active feedback cooling, and conclude with an outlook of how state-of-the-art mechanical resonators can be improved to study quantum mechanics.

399 citations

Journal ArticleDOI
28 Aug 2009-Science
TL;DR: A high-quality mechanical resonator made from a suspended carbon nanotubes driven into motion by applying a periodic radio frequency potential using a nearby antenna was studied, and it was discovered that a direct current through the nanotube spontaneously drives the mechanical resonators, exerting a force that is coherent with the high-frequency resonant mechanical motion.
Abstract: Nanoscale resonators that oscillate at high frequencies are useful in many measurement applications. We studied a high-quality mechanical resonator made from a suspended carbon nanotube driven into motion by applying a periodic radio frequency potential using a nearby antenna. Single-electron charge fluctuations created periodic modulations of the mechanical resonance frequency. A quality factor exceeding 10 5 allows the detection of a shift in resonance frequency caused by the addition of a single-electron charge on the nanotube. Additional evidence for the strong coupling of mechanical motion and electron tunneling is provided by an energy transfer to the electrons causing mechanical damping and unusual nonlinear behavior. We also discovered that a direct current through the nanotube spontaneously drives the mechanical resonator, exerting a force that is coherent with the high-frequency resonant mechanical motion.

363 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the mechanical properties of few-layer graphene and graphite flakes that are suspended over circular holes and predicted fundamental resonance frequencies of these nanodrums in the gigahertz range based on the measured bending rigidity and tension.
Abstract: We have measured the mechanical properties of few-layer graphene and graphite flakes that are suspended over circular holes. The spatial profile of the flake’s spring constant is measured with an atomic force microscope. The bending rigidity of and the tension in the membranes are extracted by fitting a continuum model to the data. For flakes down to eight graphene layers, both parameters show a strong thickness dependence. We predict fundamental resonance frequencies of these nanodrums in the gigahertz range based on the measured bending rigidity and tension.

355 citations

Journal ArticleDOI
TL;DR: In this paper, the transversal vibration mode of suspended carbon nanotubes at millikelvin temperatures was observed by measuring the single-electron tunneling current through the nanotube.
Abstract: We have observed the transversal vibration mode of suspended carbon nanotubes at millikelvin temperatures by measuring the singleelectron tunneling current. The suspended nanotubes are actuated contact-free by the radio frequency electric field of a nearby antenna; the mechanical resonance is detected in the time-averaged current through the nanotube. Sharp, gate-tunable resonances due to the bending mode of the nanotube are observed, combining resonance frequencies of up to ν0 ) 350 MHz with quality factors above Q ) 10 5 , much higher than previously reported results on suspended carbon nanotube resonators. The measured magnitude and temperature dependence of the Q factor shows a remarkable agreement with the intrinsic damping predicted for a suspended carbon nanotube. By adjusting the radio frequency power on the antenna, we find that the nanotube resonator can easily be driven into the nonlinear regime.

340 citations


Cited by
More filters
Journal ArticleDOI
Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone2, James Hone1 
18 Jul 2008-Science
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

18,008 citations

Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations

Journal ArticleDOI
TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Abstract: We review the field of cavity optomechanics, which explores the interaction between electromagnetic radiation and nano- or micromechanical motion This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radiation pressure force, the large variety of experimental systems which exhibit this interaction, optical measurements of mechanical motion, dynamical backaction amplification and cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity quantum optomechanics experiments In addition, we describe the perspectives for fundamental quantum physics and for possible applications of optomechanical devices

4,031 citations

Journal ArticleDOI

3,711 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations