scispace - formally typeset
Search or ask a question
Author

Meriellen Dias

Bio: Meriellen Dias is an academic researcher from University of São Paulo. The author has contributed to research in topics: Proteome & Metabolome. The author has an hindex of 5, co-authored 16 publications receiving 228 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: An overview on Chlorella and Spirulina microalgae particularly as an alternative source of functional foods nutraceuticals and food supplements in which the following compound groups were addressed I Long Chain Polyunsaturated Fatty Acids II Phenolic Compounds III Volatile Compounds IV Sterols V Proteins Amino Acids Peptides VI Vitamins VII Polysaccharides VIII Pigments and IX Food as mentioned in this paper.
Abstract: Chlorella nbsp and nbsp Spirulina are the two of the most well known microalgae genus Both microalgae genus have a significant content of proteins vitamins pigments fatty acids sterols among others which make their production application by the food industry quite interesting nbsp Chlorella genus is a eukaryotic microorganism whereas Spirulina genus cyanobacteria is a prokaryotic microorganism The aim of this review was to provide an overview on Chlorella and Spirulina microalgae particularly as an alternative source of functional foods nutraceuticals and food supplements in which the following compound groups were addressed I Long Chain Polyunsaturated Fatty Acids II Phenolic Compounds III Volatile Compounds IV Sterols V Proteins Amino Acids Peptides VI Vitamins VII Polysaccharides VIII Pigments and IX Food Chlorella and Spirulina microalgae and their derivatives are concluded not to be widely commercially exploited However they are remarkable sources of functional foods nutraceuticals and food supplements

173 citations

Journal ArticleDOI
TL;DR: The removal of fluoroquinolones by biological treatment is ineffective, and it is believed that only advanced oxidation technologies are able to destroy these emerging pollutants.
Abstract: Over the past few decades, a high number of pharmaceuticals have been detected in surface, ground and drinking waters. This contamination comes from domestic sewage, livestock, hospitals and chemical-pharmaceutical industries. Typical examples of these pollutants are the fluoroquinolones - powerful antibiotics used in human and veterinary medicine. The presence of fluoroquinolones in the environment can pose a serious threat to the ecosystem and to human health due to their high consumption globally: in 1998, around 120 tons were produced. Even at low environmental concentrations, antibiotics stimulate bacterial resistance. The consequences of the presence of fluoroquinolones in the environment are not fully understood, but are known to be toxic to plants and aquatic organisms. Approximately 85% of the fluoroquinolones present in influents can be removed by conventional wastewater treatment plants, but the removed fraction is frequently accumulated in the sludge, which is sometimes used as fertilizer, representing an additional input route into the environment. The removal of fluoroquinolones by biological treatment is ineffective, and it is believed that only advanced oxidation technologies are able to destroy these emerging pollutants.

120 citations

Journal ArticleDOI
TL;DR: Protein hydrolyzates of Stripped weakfish industrial byproducts present a potential for use as natural antimicrobial and antioxidant preservatives in food.
Abstract: Protein hydrolyzates of Stripped weakfish (Cynoscion guatucupa) industrial byproducts were prepared, and their antimicrobial and antioxidant activities, as well as bioaccessibility were evaluated. Byproducts were hydrolyzed by Alcalase (HA) and Protamex (HP) to achieve degrees of hydrolysis (DH) of 5, 10 and 15%, respectively. Resulting hydrolyzates were enzymatically digested with pepsin and pancreatin to determine the in vitro bioaccessibility. The highest antimicrobial activity was verified for HA with DH 5% (HA5) against Escherichia coli O157:H7 (5.50 ± 0.17 mm). Whereas HP with DH 5% (HP5) showed the highest antioxidant activity for the tested assays. After simulated in vitro gastrointestinal digestion, all samples were bioaccessible and showed an increase for the ABTS and hydroxyl radical scavenging with the highest activities for HA5 (87.7 ± 0.21%) and HP5 (87.5 ± 0.34%) and HP5 (96.7 ± 0.86%) and HP15 (97.5 ± 0.15%), respectively. We then submitted HA5 and HP5 to peptide sequences analysis, the bioactivities were attributed to the presence of amino acid such Phe, Leu, and Trp in the peptide sequences and peptide sequences like WDDMEK (HP5). The developed peptides present a potential for use as natural antimicrobial and antioxidant preservatives in food.

56 citations

Journal ArticleDOI
TL;DR: The MALDI Biotyper protocol proves useful as a rapid and reliable assay for distinguishing different microorganisms possibly related to CKD and PD.
Abstract: Rationale Chronic kidney disease (CKD) and periodontitis (PD) are important health issues. There is a large variety of microorganisms related to the pathogenesis of periodontitis, and optimising the time and the cost of laboratory assays to detect these organisms is highly valuable in the medical field. Methods Bacteria were isolated from saliva and oral biofilm of 30 adolescents and young adults with definite medical and dental diagnosis of CKD and PD, respectively, and proteins were extracted for microorganism identification by means of the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) technique. Results The results showed that the most incident microorganisms were Actinomyces dentalis (43%), Acinetobacter ursingi (60%), Aggregatibacter actinomycetencomitans (60%), Corynebacterium argentoctens (63%), Staphylococcus aureus (93%), Streptococcus salivarius (97%) and Tannerella forsythensis (43%). The analysis of oral biofilm showed higher incidences for Actinomyces dentalis (33%), Acinetobacter ursingi (50%), Aggregatibacter actinomycetencomitans (50%), Corynebacterium argentoctens (70%), Pseudomonas aeruginosa (40%), Staphylococcus aureus (73%) and Streptococcus salivarius (87%). Conclusions Based on these results, we concluded that the MALDI Biotyper protocol proves useful as a rapid and reliable assay for distinguishing different microorganisms possibly related to CKD and PD. Copyright © 2016 John Wiley & Sons, Ltd.

13 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This 11th edition of the book Modern Nutrition in Health and Disease, featuring the work of more than 190 expert authors and divided into five parts, fully explains and encapsulates the fundamentals of nutrition and its role in contemporary society.
Abstract: This 11th edition of the book Modern Nutrition in Health and Disease, featuring the work of more than 190 expert authors and divided into five parts, fully explains and encapsulates the fundamentals of nutrition and its role in contemporary society, from mastering the basic science of nutrient metabolism and function to applying nutritional concepts to combat human disease. Part I comprehensively covers specific dietary components, including major dietary constituents, minerals, vitamins and other Other CABI sites 

1,105 citations

Journal ArticleDOI
TL;DR: This work is an updated overview of apigenin, focusing on its health-promoting effects/therapeutic functions and, in particular, results of in vivo research, and an introduction to its chemistry.
Abstract: Several plant bioactive compounds have exhibited functional activities that suggest they could play a remarkable role in preventing a wide range of chronic diseases. The largest group of naturally-occurring polyphenols are the flavonoids, including apigenin. The present work is an updated overview of apigenin, focusing on its health-promoting effects/therapeutic functions and, in particular, results of in vivo research. In addition to an introduction to its chemistry, nutraceutical features have also been described. The main key findings from in vivo research, including animal models and human studies, are summarized. The beneficial indications are reported and discussed in detail, including effects in diabetes, amnesia and Alzheimer’s disease, depression and insomnia, cancer, etc. Finally, data on flavonoids from the main public databases are gathered to highlight the apigenin’s key role in dietary assessment and in the evaluation of a formulated diet, to determine exposure and to investigate its health effects in vivo.

525 citations

Journal ArticleDOI
TL;DR: Despite the underlying potential in formulation of functional food/feed, extensive research and development efforts are still required before microalgae at large become a commercial reality in food and feed formulation.
Abstract: Bioactive compounds, e.g., protein, polyunsaturated fatty acids, carotenoids, vitamins and minerals, found in commercial form of microalgal biomass (e.g., powder, flour, liquid, oil, tablet, or capsule forms) may play important roles in functional food (e.g., dairy products, desserts, pastas, oil-derivatives, or supplements) or feed (for cattle, poultry, shellfish, and fish) with favorable outcomes upon human health, including antioxidant, anti-inflammatory, antimicrobial, and antiviral effects, as well as prevention of gastric ulcers, constipation, anemia, diabetes, and hypertension. However, scale up remains a major challenge before commercial competitiveness is attained. Notwithstanding the odds, a few companies have already overcome market constraints, and are successfully selling extracts of microalgae as colorant, or supplement for food and feed industries. Strong scientific evidence of probiotic roles of microalgae in humans is still lacking, while scarce studies have concluded on probiotic activity in marine animals upon ingestion. Limitations in culture harvesting and shelf life extension have indeed constrained commercial viability. There are, however, scattered pieces of evidence that microalgae play prebiotic roles, owing to their richness in oligosaccharides—hardly fermented by other members of the intestinal microbiota, or digested throughout the gastrointestinal tract of humans/animals for that matter. However, consistent applications exist only in the dairy industry and aquaculture. Despite the underlying potential in formulation of functional food/feed, extensive research and development efforts are still required before microalgae at large become a commercial reality in food and feed formulation.

213 citations

Journal ArticleDOI
TL;DR: There is a scientific gap on the occurrence and fate of antiparatic drugs in tap waters, and data on VPRs removal in drinking water treatment plants (DWTPs) at each step of the process is presented.

184 citations

Journal ArticleDOI
TL;DR: This paper aims to characterize microalgae that have already been recognized as safe or authorized as additives for humans and animals as well as those that have not yet been marketed, and confirms the prerogative of some species to produce certain products such as carotenoids, polyunsaturated fatty acids, and proteins.
Abstract: The exploration of new food sources and natural products is the result of the increase in world population as well as the need for a healthier diet; in this context, microalgae are undoubtedly an interesting solution. With the intent to enhance their value in new commercial applications, this paper aims to characterize microalgae that have already been recognized as safe or authorized as additives for humans and animals (Chlorella vulgaris, Arthrospira platensis, Haematococcus pluvialis, Dunaliella salina) as well as those that have not yet been marketed (Scenedesmus almeriensis and Nannocholoropsis sp.). In this scope, the content of proteins, carbohydrates, lipids, total dietary fiber, humidity, ash, and carotenoids has been measured via standard methods. In addition, individual carotenoids (beta-carotene, astaxanthin, and lutein) as well as individual saturated, monounsaturated, and polyunsaturated fatty acids have been identified and quantified chromatographically. The results confirm the prerogative of some species to produce certain products such as carotenoids, polyunsaturated fatty acids, and proteins, but also show how their cellular content is rich and diverse. H. pluvialis green and red phases, and Nannochloropsis sp., in addition to producing astaxanthin and omega-3, contain about 25–33% w/w proteins on a dry basis. D. salina is rich in beta-carotene (3.45% w/w on a dry basis), S. Almeriensis is a source of lutein (0.30% w/w on a dry basis), and the C. vulgaris species is a protein-based microalgae (45% w/w on a dry basis). All, however, can also produce important fatty acids such as palmitic acid, γ-linolenic acid, and oleic acid. Considering their varied composition, these microalgae can find applications in multiple sectors. This is true for microalgae already on the market as well as for promising new sources of bioproducts such as S. almeriensis and Nannochloropsis sp.

143 citations