scispace - formally typeset
Search or ask a question
Author

Mervi Seppänen

Bio: Mervi Seppänen is an academic researcher from University of Helsinki. The author has contributed to research in topics: Cold acclimation & Selenium. The author has an hindex of 15, co-authored 66 publications receiving 1323 citations. Previous affiliations of Mervi Seppänen include University of Maryland, College Park.


Papers
More filters
Journal ArticleDOI
TL;DR: The present study suggests that selenium can play a protective role during HT stress by enhancing the antioxidant defense system.

397 citations

Journal ArticleDOI
TL;DR: Results showing elevated starch concentration in Se-treated lettuce justify the conclusion that Se has positive effects also on potato carbohydrate accumulation and possibly on yield formation.
Abstract: The effect of selenium (Se) treatments on potato growth and Se, soluble sugar, and starch accumulation was investigated. Potato plants were cultivated in quartz sand without or with sodium selenate (0, 0.075, 0.3 mg Se kg(-1) sand). In young potato plants, Se treatment resulted in higher starch concentrations in upper leaves. The tuber yield of Se-treated potato plants was higher and composed of relatively few but large tubers. At harvest, the starch concentration in tubers did not differ significantly between treatments. The higher Se addition (0.3 mg Se kg(-1)) may have delayed the aging of stolons and roots, which was observed as high concentrations of soluble sugar and starch. Together with the earlier results showing elevated starch concentration in Se-treated lettuce, the findings of this research justify the conclusion that Se has positive effects also on potato carbohydrate accumulation and possibly on yield formation.

231 citations

Journal ArticleDOI
TL;DR: The results suggest that Se is an antioxidant or it activates protective mechanisms, which can alleviate oxidative stress in the chloroplasts, and improve the recovery of chlorophyll content following light stress.

209 citations

Journal ArticleDOI
TL;DR: It is concluded that the agronomic biofortification of Brassica species can improve the nutritive quality of the protein rich meal fraction as it contains significant amount of SeMet.
Abstract: Selenium (Se) is an essential micronutrient and is circulated to the food chain through crops. Brassica species are efficient in Se accumulation and thus, good species for Se biofortification purposes. The residual fraction obtained after oil processing of Brassica seeds, the meal, is an important protein source in animal diets and used in feed concentrates. The accumulation of soil or foliar applied Se in the seeds and meal of Brassica napus and B. rapa as well as its effects on growth and yield formation was studied in two field experiments. Also, a HPLC-ICP-MS based method for the identification and quantification of Se species in Brassica seeds and meal was developed. Selenium application did not affect the yield or oil content. High accumulation of Se in the seeds and meal (1.92–1.96 μg Se g−1) was detected. Biotransformation of inorganic Se was evaluated by using HPLC-ICP-MS previous enzymatic hydrolysis for species extraction. The Se speciation studies showed that up to 85% of the total Se was SeMet whereas other Se-species were not detected. We conclude that the agronomic biofortification of Brassica species can improve the nutritive quality of the protein rich meal fraction as it contains significant amount of SeMet.

76 citations

Journal ArticleDOI
TL;DR: A novel, low temperature regulated GST is cloned and characterized from a cold acclimated wild potato species S. commersonii and the level of its transcription in freezing tolerant and sensitive Solanum genotypes is studied, revealing a more complex relationship between freezing tolerance and Scgst1 expression level.

60 citations


Cited by
More filters
Book
01 Mar 2007
TL;DR: Trace Elements of the Human Environment: Biogeochemistry of Trace Elements and Trace Elements of Group 1 (Previously Group Ia).
Abstract: Biogeochemistry of the Human Environment.- The Biosphere.- Soils.- Waters.- Air.- Plants.- Humans.- Biogeochemistry of Trace Elements.- Trace Elements of Group 1 (Previously Group Ia).- Trace Elements of Group 2 (Previously Group IIa).- Trace Elements of Group 3 (Previously Group IIIb).- Trace Elements of Group 4 (Previously Group IVb).- Trace Elements of Group 5 (Previously Group Vb).- Trace Elements of Group 6 (Previously Group VIb).- Trace Elements of Group 7 (Previously Group VIIb).- Trace Elements of Group 8 (Previously Part of Group VIII).- Trace Elements of Group 9 (Previously Part of Group VIII).- Trace Elements of Group 10 (Previously Part of Group VIII).- Trace Elements of Group 11 (Previously Group Ib).- Trace Elements of Group 12 (Previously Group IIb).- Trace Elements of Group 13 (Previously Group IIIa).- Trace Elements of Group 14 (Previously Group IVa).- Trace Elements of Group 15 (Previously Group Va).- Trace Elements of Group 16 (Previously Group VIa).- Trace Elements of Group 17 (Previously Group VIIa).

1,700 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review aspects of soil science, plant physiology and genetics underpinning crop bio-fortification strategies, as well as agronomic and genetic approaches currently taken to biofortify food crops with the mineral elements most commonly lacking in human diets: iron (Fe), zinc (Zn), copper (Cu), calcium (Ca), magnesium (Mg), iodine (I) and selenium (Se).
Abstract: Summary The diets of over two-thirds of the world's population lack one or more essential mineral elements. This can be remedied through dietary diversification, mineral supplementation, food fortification, or increasing the concentrations and/or bioavailability of mineral elements in produce (biofortification). This article reviews aspects of soil science, plant physiology and genetics underpinning crop biofortification strategies, as well as agronomic and genetic approaches currently taken to biofortify food crops with the mineral elements most commonly lacking in human diets: iron (Fe), zinc (Zn), copper (Cu), calcium (Ca), magnesium (Mg), iodine (I) and selenium (Se). Two complementary approaches have been successfully adopted to increase the concentrations of bioavailable mineral elements in food crops. First, agronomic approaches optimizing the application of mineral fertilizers and/or improving the solubilization and mobilization of mineral elements in the soil have been implemented. Secondly, crops have been developed with: increased abilities to acquire mineral elements and accumulate them in edible tissues; increased concentrations of ‘promoter’ substances, such as ascorbate, β-carotene and cysteine-rich polypeptides which stimulate the absorption of essential mineral elements by the gut; and reduced concentrations of ‘antinutrients’, such as oxalate, polyphenolics or phytate, which interfere with their absorption. These approaches are addressing mineral malnutrition in humans globally.

1,677 citations

Journal ArticleDOI
TL;DR: The recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels are reviewed and various approaches being taken to enhance thermotolerance in plants are described.
Abstract: High temperature (HT) stress is a major environmental stress that limits plant growth, metabolism, and productivity worldwide Plant growth and development involve numerous biochemical reactions that are sensitive to temperature Plant responses to HT vary with the degree and duration of HT and the plant type HT is now a major concern for crop production and approaches for sustaining high yields of crop plants under HT stress are important agricultural goals Plants possess a number of adaptive, avoidance, or acclimation mechanisms to cope with HT situations In addition, major tolerance mechanisms that employ ion transporters, proteins, osmoprotectants, antioxidants, and other factors involved in signaling cascades and transcriptional control are activated to offset stress-induced biochemical and physiological alterations Plant survival under HT stress depends on the ability to perceive the HT stimulus, generate and transmit the signal, and initiate appropriate physiological and biochemical changes HT-induced gene expression and metabolite synthesis also substantially improve tolerance The physiological and biochemical responses to heat stress are active research areas, and the molecular approaches are being adopted for developing HT tolerance in plants This article reviews the recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels and describes various approaches being taken to enhance thermotolerance in plants

1,392 citations

Journal ArticleDOI
TL;DR: Current Protocols in Molecular Biology Title NLM.

1,258 citations

Journal ArticleDOI
TL;DR: This review is to assess the mode of action and role of antioxidants in protecting plants from stress caused by the presence of heavy metals in the environment.
Abstract: The contamination of soils and water with metals has created a major environmental problem, leading to considerable losses in plant productivity and hazardous health effects. Exposure to toxic metals can intensify the production of reactive oxygen species (ROS), which are continuously produced in both unstressed and stressed plants cells. Some of the ROS species are highly toxic and must be detoxified by cellular stress responses, if the plant is to survive and grow. The aim of this review is to assess the mode of action and role of antioxidants in protecting plants from stress caused by the presence of heavy metals in the environment.

1,065 citations