scispace - formally typeset
Search or ask a question
Author

Mervyn P. Freeman

Bio: Mervyn P. Freeman is an academic researcher from British Antarctic Survey. The author has contributed to research in topics: Interplanetary magnetic field & Solar wind. The author has an hindex of 39, co-authored 173 publications receiving 5764 citations. Previous affiliations of Mervyn P. Freeman include Johns Hopkins University & Natural Environment Research Council.


Papers
More filters
Journal ArticleDOI
25 Oct 2007-Nature
TL;DR: This work analyzes a new, high-resolution data set of wandering albatross flights, and finds no evidence for Lévy flight behaviour, and proposes a widely applicable method to test for power-law distributions using likelihood and Akaike weights.
Abstract: The study of animal foraging behaviour is of practical ecological importance1, and exemplifies the wider scientific problem of optimizing search strategies2. Levy flights are random walks, the step lengths of which come from probability distributions with heavy power-law tails3, 4, such that clusters of short steps are connected by rare long steps. Levy flights display fractal properties, have no typical scale, and occur in physical3, 4, 5 and chemical6 systems. An attempt to demonstrate their existence in a natural biological system presented evidence that wandering albatrosses perform Levy flights when searching for prey on the ocean surface7. This well known finding2, 4, 8, 9 was followed by similar inferences about the search strategies of deer10 and bumblebees10. These pioneering studies have triggered much theoretical work in physics (for example, refs 11, 12), as well as empirical ecological analyses regarding reindeer13, microzooplankton14, grey seals15, spider monkeys16 and fishing boats17. Here we analyse a new, high-resolution data set of wandering albatross flights, and find no evidence for Levy flight behaviour. Instead we find that flight times are gamma distributed, with an exponential decay for the longest flights. We re-analyse the original albatross data7 using additional information, and conclude that the extremely long flights, essential for demonstrating Levy flight behaviour, were spurious. Furthermore, we propose a widely applicable method to test for power-law distributions using likelihood18 and Akaike weights19, 20. We apply this to the four original deer and bumblebee data sets10, finding that none exhibits evidence of Levy flights, and that the original graphical approach10 is insufficient. Such a graphical approach has been adopted to conclude Levy flight movement for other organisms13, 14, 15, 16, 17, and to propose Levy flight analysis as a potential real-time ecosystem monitoring tool17. Our results question the strength of the empirical evidence for biological Levy flights.

819 citations

Journal ArticleDOI
TL;DR: The Super Dual Auroral Radar Network (SuperDARN) as discussed by the authors has been operating as an international co-operative organization for over 10 years and has been successful in addressing a wide range of scientific questions concerning processes in the magnetosphere, ionosphere, thermosphere, and mesosphere, as well as general plasma physics questions.
Abstract: The Super Dual Auroral Radar Network (SuperDARN) has been operating as an international co-operative organization for over 10 years. The network has now grown so that the fields of view of its 18 radars cover the majority of the northern and southern hemisphere polar ionospheres. SuperDARN has been successful in addressing a wide range of scientific questions concerning processes in the magnetosphere, ionosphere, thermosphere, and mesosphere, as well as general plasma physics questions. We commence this paper with a historical introduction to SuperDARN. Following this, we review the science performed by SuperDARN over the last 10 years covering the areas of ionospheric convection, field-aligned currents, magnetic reconnection, substorms, MHD waves, the neutral atmosphere, and E-region ionospheric irregularities. In addition, we provide an up-to-date description of the current network, as well as the analysis techniques available for use with the data from the radars. We conclude the paper with a discussion of the future of SuperDARN, its expansion, and new science opportunities.

690 citations

Journal ArticleDOI
TL;DR: In this paper, high-resolution magnetic field and plasma measurements of an interplanetary magnetic cloud and its interaction with the earth's magnetosphere on January 14/15, 1988 are interpreted and discussed.
Abstract: High time resolution interplanetary magnetic field and plasma measurements of an interplanetary magnetic cloud and its interaction with the earth's magnetosphere on January 14/15, 1988 are interpreted and discussed. It is argued that the data are consistent with the theoretical model of magnetic clouds as flux ropes of local straight cylindrical geometry. The data also suggest that this cloud is aligned with its axis in the ecliptic plane and pointing in the east-west direction. Evidence consisting of the intensity and directional distribution of energetic particle in the magnetic cloud argues in favor of the connectedness of the magnetic field lines to the sun's surface. The intensities of about 0.5 MeV ions is rapidly enhanced and the particles stream in a collimated beam along the magnetic field preferentially from the west of the sun. The particles travel form a flare site along the cloud magnetic field lines, which are thus presumably still attached to the sun.

217 citations

Journal ArticleDOI
01 Jun 1990
TL;DR: In this article, the authors considered that convection in the high-latitude ionosphere should be the sum of two intrinsically time-dependent patterns, one driven by solar wind-magnetosphere coupling at the dayside magnetopause, the other by the release of energy in the geomagnetic tail.
Abstract: Recent observations of ionospheric flows by ground-based radars, in particular by the European Incoherent Scatter (EISCAT) facility using the “Polar” experiment, together with previous analyses of the response of geomagnetic disturbance to variations of the interplanetary magnetic field (IMF), suggest that convection in the high-latitude ionosphere should be considered to be the sum of two intrinsically time-dependent patterns, one driven by solar wind-magnetosphere coupling at the dayside magnetopause, the other by the release of energy in the geomagnetic tail (mainly by dayside and nightside reconnection, respectively). The flows driven by dayside coupling are largest on the dayside, where they usually dominate, are associated with an expanding polar cap area, and are excited and decay on ∼10-min time scales following southward and northward turnings of the IMF, respectively. The latter finding indicates that the production of new open flux at the dayside magnetopause excites magnetospheric and ionospheric flow only for a short interval, ∼10 min, such that the flow driven by this source subsequently decays on this time scale unless maintained by the production of more open flux tubes. Correspondingly, the flows excited by the release of energy in the tail, mainly during substorms, are largest on the nightside, are associated with a contracting polar cap boundary, and are excited on ∼1-hour time scales following a southward turn of the IMF. In general, the total ionospheric flow will be the sum of the flows produced by these two sources, such that due to their different response times to changes in the IMF, considerable variations in the flow pattern can occur for a given direction and strength of the IMF. Consequently, the ionospheric electric field cannot generally be regarded as arising from a simple mapping of the solar wind electric field along open flux tubes.

198 citations

Journal ArticleDOI
01 May 1989
TL;DR: The terrestrial magnetopause suffered considerable sudden changes in its location on 9-10 September 1978 as mentioned in this paper, which were accompanied by disturbances of the geomagnetic field on the ground.
Abstract: The terrestrial magnetopause suffered considerable sudden changes in its location on 9–10 September 1978. These magnetopause motions were accompanied by disturbances of the geomagnetic field on the ground. We present a study of the magnetopause motions and the ground magnetic signatures using, for the latter, 10 s averaged data from 14 high latitude ground magnetometer stations. Observations in the solar wind (from IMP 8) are employed and the motions of the magnetopause are monitored directly by the spacecraft ISEE 1 and 2. With these coordinated observations we are able to show that it is the sudden changes in the solar wind dynamic pressure that are responsible for the disturbances seen on the ground. At some ground stations we see evidence of a “ringing” of the magnetospheric cavity, while at others only the initial impulse is evident. We note that at some stations field perturbations closely match the hypothesized ground signatures of flux transfer events. In accordance with more recent work in the area (e.g. Potemra et al., 1989, J. geophys. Res., in press), we argue that causes other than impulsive reeonnection may produce the twin ionospheric flow vortex originally proposed as a flux transfer even signature.

133 citations


Cited by
More filters
Journal ArticleDOI
10 Mar 2008-Nature
TL;DR: In this article, the authors study the trajectory of 100,000 anonymized mobile phone users whose position is tracked for a six-month period and find that the individual travel patterns collapse into a single spatial probability distribution, indicating that humans follow simple reproducible patterns.
Abstract: The mapping of large-scale human movements is important for urban planning, traffic forecasting and epidemic prevention. Work in animals had suggested that their foraging might be explained in terms of a random walk, a mathematical rendition of a series of random steps, or a Levy flight, a random walk punctuated by occasional larger steps. The role of Levy statistics in animal behaviour is much debated — as explained in an accompanying News Feature — but the idea of extending it to human behaviour was boosted by a report in 2006 of Levy flight-like patterns in human movement tracked via dollar bills. A new human study, based on tracking the trajectory of 100,000 cell-phone users for six months, reveals behaviour close to a Levy pattern, but deviating from it as individual trajectories show a high degree of temporal and spatial regularity: work and other commitments mean we are not as free to roam as a foraging animal. But by correcting the data to accommodate individual variation, simple and predictable patterns in human travel begin to emerge. The cover photo (by Cesar Hidalgo) captures human mobility in New York's Grand Central Station. This study used a sample of 100,000 mobile phone users whose trajectory was tracked for six months to study human mobility patterns. Displacements across all users suggest behaviour close to the Levy-flight-like pattern observed previously based on the motion of marked dollar bills, but with a cutoff in the distribution. The origin of the Levy patterns observed in the aggregate data appears to be population heterogeneity and not Levy patterns at the level of the individual. Despite their importance for urban planning1, traffic forecasting2 and the spread of biological3,4,5 and mobile viruses6, our understanding of the basic laws governing human motion remains limited owing to the lack of tools to monitor the time-resolved location of individuals. Here we study the trajectory of 100,000 anonymized mobile phone users whose position is tracked for a six-month period. We find that, in contrast with the random trajectories predicted by the prevailing Levy flight and random walk models7, human trajectories show a high degree of temporal and spatial regularity, each individual being characterized by a time-independent characteristic travel distance and a significant probability to return to a few highly frequented locations. After correcting for differences in travel distances and the inherent anisotropy of each trajectory, the individual travel patterns collapse into a single spatial probability distribution, indicating that, despite the diversity of their travel history, humans follow simple reproducible patterns. This inherent similarity in travel patterns could impact all phenomena driven by human mobility, from epidemic prevention to emergency response, urban planning and agent-based modelling.

5,514 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
01 Nov 2010
TL;DR: The most relevant studies carried out in educational data mining to date are surveyed and the different groups of user, types of educational environments, and the data they provide are described.
Abstract: Educational data mining (EDM) is an emerging interdisciplinary research area that deals with the development of methods to explore data originating in an educational context. EDM uses computational approaches to analyze educational data in order to study educational questions. This paper surveys the most relevant studies carried out in this field to date. First, it introduces EDM and describes the different groups of user, types of educational environments, and the data they provide. It then goes on to list the most typical/common tasks in the educational environment that have been resolved through data-mining techniques, and finally, some of the most promising future lines of research are discussed.

1,723 citations

Journal ArticleDOI
TL;DR: This Perspective is intended as a guidebook for both experimentalists and theorists working on systems, which exhibit anomalous diffusion, and pays special attention to the ergodicity breaking parameters for the different anomalous stochastic processes.
Abstract: Modern microscopic techniques following the stochastic motion of labelled tracer particles have uncovered significant deviations from the laws of Brownian motion in a variety of animate and inanimate systems. Such anomalous diffusion can have different physical origins, which can be identified from careful data analysis. In particular, single particle tracking provides the entire trajectory of the traced particle, which allows one to evaluate different observables to quantify the dynamics of the system under observation. We here provide an extensive overview over different popular anomalous diffusion models and their properties. We pay special attention to their ergodic properties, highlighting the fact that in several of these models the long time averaged mean squared displacement shows a distinct disparity to the regular, ensemble averaged mean squared displacement. In these cases, data obtained from time averages cannot be interpreted by the standard theoretical results for the ensemble averages. Here we therefore provide a comparison of the main properties of the time averaged mean squared displacement and its statistical behaviour in terms of the scatter of the amplitudes between the time averages obtained from different trajectories. We especially demonstrate how anomalous dynamics may be identified for systems, which, on first sight, appear to be Brownian. Moreover, we discuss the ergodicity breaking parameters for the different anomalous stochastic processes and showcase the physical origins for the various behaviours. This Perspective is intended as a guidebook for both experimentalists and theorists working on systems, which exhibit anomalous diffusion.

1,390 citations

Journal ArticleDOI
TL;DR: The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere.
Abstract: The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and associated electronics. The dual configuration provides redundancy and also permits accurate removal of the dipolar portion of the spacecraft magnetic field. The instrument provides (1) near real-time data at nominally one vector per 92 s as key parameter data for broad dissemination, (2) rapid data at 10.9 vectors s−1 for standard analysis, and (3) occasionally, snapshot (SS) memory data and Fast Fourier Transform data (FFT), both based on 44 vectors s−1. These measurements will be precise (0.025%), accurate, ultra-sensitive (0.008 nT/step quantization), and where the sensor noise level is <0.006 nT r.m.s. for 0–10 Hz. The digital processing unit utilizes a 12-bit microprocessor controlled analogue-to-digital converter. The instrument features a very wide dynamic range of measurement capability, from ±4 nT up to ±65 536 nT per axis in eight discrete ranges. (The upper range permits complete testing in the Earth's field.) In the FTT mode power spectral density elements are transmitted to the ground as fast as once every 23 s (high rate), and 2.7 min of SS memory time series data, triggered automatically by pre-set command, requires typically about 5.1 hours for transmission. Standard data products are expected to be the following vector field averages: 0.0227-s (detail data from SS), 0.092 s (‘detail’ in standard mode), 3 s, 1 min, and 1 hour, in both GSE and GSM coordinates, as well as the FFT spectral elements. As has been our team's tradition, high instrument reliability is obtained by the use of fully redundant systems and extremely conservative designs. We plan studies of the solar wind: (1) as a collisionless plasma laboratory, at all time scales, macro, meso and micro, but concentrating on the kinetic scale, the highest time resolution of the instrument (=0.022 s), (2) as a consequence of solar energy and mass output, (3) as an external source of plasma that can couple mass, momentum, and energy to the Earth's magnetosphere, and (4) as it is modified as a consequence of its imbedded field interacting with the moon. Since the GEOTAIL Inboard Magnetometer (GIM), which is similar to the MFI instrument, was developed by members of our team, we provide a brief discussion of GIM related science objectives, along with MFI related science goals.

1,368 citations