scispace - formally typeset
Search or ask a question
Author

Merwan Benhabib

Bio: Merwan Benhabib is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Cartridge & Raman spectroscopy. The author has an hindex of 7, co-authored 12 publications receiving 419 citations.

Papers
More filters
Proceedings ArticleDOI
21 May 2007
TL;DR: The goal of the work is to focus on health-related applications of wireless sensor networks and how current (and future) technologies will enable automated home health monitoring.
Abstract: Sophisticated electronics are within reach of average users. Cooperation between wireless sensor networks and existing consumer electronic infrastructures can assist in the areas of health care and patient monitoring. This will improve the quality of life of patients, provide early detection for certain ailments, and improve doctor-patient efficiency. The goal of our work is to focus on health-related applications of wireless sensor networks. In this paper we detail our experiences building several prototypes and discuss the driving force behind home health monitoring and how current (and future) technologies will enable automated home health monitoring.

200 citations

Journal ArticleDOI
01 Dec 2015-Talanta
TL;DR: The fabrication techniques of fully paper-based and paper hybrid microfluidic platforms are summarized, followed with their applications in human health diagnostics and food safety analysis, and hybrid platforms are highlighted because hybrid platforms could draw benefits from multiple device substrates.

122 citations

Journal ArticleDOI
TL;DR: The McMOA exploits lab-on-a-chip technologies to fully integrate complex autonomous operations demonstrating the facile engineering of microchip-CE platforms for the analysis of a wide variety of organic compounds in planetary exploration.
Abstract: The Multichannel Mars Organic Analyzer (McMOA), a portable instrument for the sensitive microchip capillary electrophoresis (CE) analysis of organic compounds such as amino acid biomarkers and polycyclic aromatic hydrocarbons (PAHs), is developed. The instrument uses a four-layer microchip, containing eight CE analysis systems integrated with a microfluidic network for autonomous fluidic processing. The McMOA has improved optical components that integrate 405 nm laser excitation with a linear-scanning optical system capable of multichannel real-time fluorescence spectroscopic analysis. The instrumental limit of detection is 6 pM (glycine). Microfluidic programs are executed to perform the automated sequential analysis of an amine-containing sample in each channel as well as eight consecutive analyses of alternating samples on the same channel, demonstrating less than 1% cross-contamination. The McMOA is used to identify the unique fluorescence spectra of nine components in a PAH standard and then applied to the analysis of a sediment sample from Lake Erie. The presence of benzo[a]pyrene and perylene in this sample is confirmed, and a peak coeluting with anthanthrene is disqualified based on spectral analysis. The McMOA exploits lab-on-a-chip technologies to fully integrate complex autonomous operations demonstrating the facile engineering of microchip-CE platforms for the analysis of a wide variety of organic compounds in planetary exploration.

67 citations

Journal ArticleDOI
TL;DR: This work establishes the capability of the MOA for studying aldehydes and ketones, a critical class of oxidized organic molecules of interest in planetary and in terrestrial environmental and health studies.
Abstract: A microchip CE method is developed for the analysis of two oxidized forms of carbon, aldehydes and ketones, with the Mars Organic Analyzer (MOA). Fluorescent derivitization is achieved in ∼15 min by hydrazone formation with Cascade Blue hydrazide in 30 mM borate pH 5–6. The microchip CE separation and analysis method is optimized via separation in 30 mM borate buffer, pH 9.5, at 20°C. A carbonyl standard consisting of ten aldehydes and ketones found in extraterrestrial matter is successfully separated; the resulting LOD depends on the reactivity of the compound and range from 70 pM for formaldehyde to 2 μM for benzophenone. To explore the utility of this method for analyzing complex samples, analyses of several fermented beverages are conducted, identifying ten aldehydes and ketones ranging from 30 nM to 5 mM. A Martian regolith simulant sample, consisting of a basalt matrix spiked with soluble ions and acetone, is designed and analyzed, but acetone is found to have a limited detectable lifetime under simulant Martian conditions. This work establishes the capability of the MOA for studying aldehydes and ketones, a critical class of oxidized organic molecules of interest in planetary and in terrestrial environmental and health studies.

32 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This survey presents a comprehensive review of the recent literature since the publication of a survey on sensor networks, and gives an overview of several new applications and then reviews the literature on various aspects of WSNs.

5,626 citations

Journal ArticleDOI
TL;DR: This paper provides several state of the art examples together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the benefits and challenges of these systems.

1,331 citations

Journal ArticleDOI
TL;DR: This paper provides a detailed investigation of sensor devices, physical layer, data link layer, and radio technology aspects of BAN research, and presents a taxonomy of B Ban projects that have been introduced/proposed to date.
Abstract: Advances in wireless communication technologies, such as wearable and implantable biosensors, along with recent developments in the embedded computing area are enabling the design, development, and implementation of body area networks. This class of networks is paving the way for the deployment of innovative healthcare monitoring applications. In the past few years, much of the research in the area of body area networks has focused on issues related to wireless sensor designs, sensor miniaturization, low-power sensor circuitry, signal processing, and communications protocols. In this paper, we present an overview of body area networks, and a discussion of BAN communications types and their related issues. We provide a detailed investigation of sensor devices, physical layer, data link layer, and radio technology aspects of BAN research. We also present a taxonomy of BAN projects that have been introduced/proposed to date. Finally, we highlight some of the design challenges and open issues that still need to be addressed to make BANs truly ubiquitous for a wide range of applications.

1,239 citations

Journal ArticleDOI
TL;DR: The successful demonstration of electrophoresis and electroosmotic pumping in a microfluidic device provided a nonmechanical method for both fluid control and separation, and integration of multiple processes can be highly enabling for many applications.
Abstract: Microfluidics consist of microfabricated structures for liquid handling, with cross-sections in the 1–500 μm range, and small volume capacity (fL-nL) Capillary tubes connected with fittings,1 although utilizing small volumes, are not considered microfluidics for the purposes of this paper since they are not microfabricated Likewise, millifluidic systems, made by conventional machining tools, are excluded due to their larger feature sizes (>500 μm) Though micromachined systems for gas chromatography were introduced in the 1970’s,2 the field of microfluidics did not gain much traction until the 1990’s3 Silicon and glass were the original materials used, but then the focus shifted to include polymer substrates, and in particular, polydimethylsiloxane (PDMS) Since then the field has grown to encompass a wide variety of materials and applications The successful demonstration of electrophoresis and electroosmotic pumping in a microfluidic device provided a nonmechanical method for both fluid control and separation4 Laser induced fluorescence (LIF) enabled sensitive detection of fluorophores or fluorescently labeled molecules The expanded availability of low-cost printing allowed for cheaper and quicker mask fabrication for use in soft lithography5 Commercial microfluidic systems are now available from Abbott, Agilent, Caliper, Dolomite, Micralyne, Microfluidic Chip Shop, Micrux Technologies and Waters, as a few prominent examples For a more thorough description of the history of microfluidics, we refer the reader to a number of comprehensive, specialized reviews,3, 6–11 as well as a more general 2006 review12 The field of microfluidics offers many advantages compared to carrying out processes through bulk solution chemistry, the first of which relates to a lesson taught to every first-year chemistry student Simply stated, diffusion is slow! Thus, the smaller the distance required for interaction, the faster it will be Smaller channel dimensions also lead to smaller sample volumes (fL-nL), which can reduce the amount of sample or reagents required for testing and analysis Reduced dimensions can also lead to portable devices to enable on-site testing (provided the associated hardware is similarly portable) Finally, integration of multiple processes (like labeling, purification, separation and detection) in a microfluidic device can be highly enabling for many applications Microelectromechanical systems (MEMS) contain integrated electrical and mechanical parts that create a sensor or system Applications of MEMS are ubiquitous, including automobiles, phones, video games and medical and biological sensors13 Micro-total analysis systems, also known as labs-on-a-chip, are the chemical analogue of MEMS, as integrated microfluidic devices that are capable of automating multiple processes relevant to laboratory sciences For example, a typical lab-on-a-chip system might selectively purify a complex mixture (through filtering, antibody capture, etc), then separate target components and detect them Microfluidic devices consist of a core of common components Areas defined by empty space, such as reservoirs (wells), chambers and microchannels, are central to microfluidic systems Positive features, created by areas of solid material, add increased functionality to a chip and can consist of membranes, monoliths, pneumatic controls, beams and pillars Given the ubiquitous nature of negative components, and microchannels in particular, we focus here on a few of their properties Microfluidic channels have small overall volumes, laminar flow and a large surface-to-volume ratio Dimensions of a typical separation channel in microchip electrophoresis (μCE) are: 50 μm width, 15 μm height and 5 cm length for a volume of 375 nL Flow in these devices is normally nonturbulent due to low Reynolds numbers For example, water flowing at 20°C in the above channel at 1 μL/min (222 cm/s) results in a Reynolds number of ~05, where <2000 is laminar flow Since flow is nonturbulent, mixing is normally diffusion-limited Small channel sizes also have a high surface-to-volume ratio, leading to different characteristics from what are commonly found in bulk volumes The material surface can be used to manipulate fluid movement (such as by electroosmotic flow, EOF) and surface interactions For a solution in contact with a charged surface, a double layer of charge is created as oppositely charged ions are attracted to the surface charges This electrical double layer consists of an inner rigid or Stern Layer and an outer diffuse layer An electrostatic potential known as the zeta potential is formed, with the magnitude of the potential decreasing as distance from the surface increases The electrical double layer is the basis for EOF, wherein an applied voltage causes the loosely bound diffuse layer to move towards an electrode, dragging the bulk solution along Charges on the exposed surface also exert a greater influence on the fluid in a channel as its size decreases Larger surface-to-volume ratios are more prone to nonspecific adsorption and surface fouling In particular, non-charged and hydrophobic microdevice surfaces can cause proteins in solution to denature and stick We focus our review on advances in microfluidic systems since 2008 In doing this, we occasionally must cover foundational work in microfluidics that is considerably less recent We do not focus on chemical synthesis applications of microfluidics although it is an expanding area, nor do we delve into lithography, device fabrication or production costs Our specific emphasis herein is on four areas within microfluidics: properties and applications of commonly used materials, basic functions, integration, and selected applications For each of these four topics we provide a concluding section on opportunities for future development, and at the end of this review, we offer general conclusions and prospective for future work in the field Due to the considerable scope of the field of microfluidics, we limit our discussion to selected examples from each area, but cite in-depth reviews for the reader to turn to for further information about specific topics We also refer the reader to recent comprehensive reviews on advances in lab-on-a-chip systems by Arora et al10 and Kovarik et al14

736 citations

Journal ArticleDOI
26 May 2011-Sensors
TL;DR: The important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care is explained.
Abstract: Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper.

461 citations