scispace - formally typeset
Search or ask a question
Author

Meryem Simsek

Bio: Meryem Simsek is an academic researcher from Intel. The author has contributed to research in topics: Wireless network & Cellular network. The author has an hindex of 22, co-authored 87 publications receiving 2605 citations. Previous affiliations of Meryem Simsek include Dresden University of Technology & Vodafone.


Papers
More filters
Journal ArticleDOI
TL;DR: The design challenges and proposed solutions for the radio interface and network architecture to fulfill latency critical IoT applications requirements are discussed, which mainly benefit from flexibility and service-centric approaches.
Abstract: Next generation mobile networks not only envision enhancing the traditional MBB use case but also aim to meet the requirements of new use cases, such as the IoT. This article focuses on latency critical IoT applications and analyzes their requirements. We discuss the design challenges and propose solutions for the radio interface and network architecture to fulfill these requirements, which mainly benefit from flexibility and service-centric approaches. The article also discusses new business opportunities through IoT connectivity enabled by future networks.

746 citations

Journal ArticleDOI
TL;DR: The paper outlines the key technical requirements and architectural approaches for the Tactile Internet, pertaining to wireless access protocols, radio resource management aspects, next generation core networking capabilities, edge-cloud, and edge-AI capabilities.
Abstract: The long-term ambition of the Tactile Internet is to enable a democratization of skill, and how it is being delivered globally. An integral part of this is to be able to transmit touch in perceived real-time, which is enabled by suitable robotics and haptics equipment at the edges, along with an unprecedented communications network. The fifth generation (5G) mobile communications systems will underpin this emerging Internet at the wireless edge. This paper presents the most important technology concepts, which lay at the intersection of the larger Tactile Internet and the emerging 5G systems. The paper outlines the key technical requirements and architectural approaches for the Tactile Internet, pertaining to wireless access protocols, radio resource management aspects, next generation core networking capabilities, edge-cloud, and edge-AI capabilities. The paper also highlights the economic impact of the Tactile Internet as well as a major shift in business models for the traditional telecommunications ecosystem.

653 citations

Journal ArticleDOI
TL;DR: This article discusses the novel proposed paradigm of cross-system learning by means of which SCBSs self-organize and autonomously steer their traffic flows across different RATs, and provides preliminary performance evaluation in a Long-Term Evolution simulator overlaid with WiFi hotspots.
Abstract: The deployment of small cell base stations, SCBSs, overlaid on existing macrocellular systems is seen as a key solution for offloading traffic, optimizing coverage, and boosting the capacity of future cellular wireless systems. The next generation of SCBSs is envisioned to be multimode (i.e., capable of transmitting simultaneously on both licensed and unlicensed bands). This constitutes a cost-effective integration of both WiFi and cellular radio access technologies that can efficiently cope with peak wireless data traffic and heterogeneous quality of service requirements. To leverage the advantage of such multimode SCBSs, we discuss the novel proposed paradigm of cross-system learning by means of which SCBSs self-organize and autonomously steer their traffic flows across different RATs. Cross-system learning allows the SCBSs to leverage the advantage of both the WiFi and cellular worlds. For example, the SCBSs can offload delay-tolerant data traffic to WiFi, while simultaneously learning the probability distribution function of their transmission strategy over the licensed cellular band. This article first introduces the basic building blocks of cross-system learning and then provides preliminary performance evaluation in a Long-Term Evolution simulator overlaid with WiFi hotspots. Remarkably, it is shown that the proposed cross-system learning approach significantly outperforms a number of benchmark traffic steering policies.

269 citations

Proceedings ArticleDOI
03 Apr 2016
TL;DR: The paper presents some of the most important Tactile Internet applications, outlines the key technical requirements, and covers end-to-end architectural aspects of the Tactiles Internet.
Abstract: Powered by next generation mobile networking capabilities, the Tactile Internet will be able to transport touch and actuation in real-time. Enabled by suitable robotics and haptics equipment at the edges, and an unprecedented communications network, the Tactile Internet will provide a true paradigm in creating skill-set delivery networks. The fifth generation (5G) mobile communications systems will underpin this emerging Internet at the wireless edge. This paper presents the most important technology concepts which lay at the intersection of the larger Tactile Internet and the emerging 5G systems. Specifically, the paper presents some of the most important Tactile Internet applications, outlines the key technical requirements, and covers end-to-end architectural aspects of the Tactile Internet.

79 citations

Proceedings ArticleDOI
01 Dec 2015
TL;DR: A multi-connectivity concept for a cloud radio access network as a solution for mobility related link failures and throughput degradation of cell-edge users is proposed.
Abstract: Ultra-high reliable communication and improved capacity are some of the major requirements of the 5th generation (5G) mobile and wireless networks. Achieving the aforementioned requirements necessitates avoiding radio link failures and the service interruption that occurs during the failures and their re-establishment procedures. Moreover, the latency associated with packet forwarding in classical handover procedures should be resolved. This paper proposes a multi-connectivity concept for a cloud radio access network as a solution for mobility related link failures and throughput degradation of cell-edge users. The concept relies on the fact that the transmissions from co-operating cells are co-ordinated for both data and control signals. Latency incurred due to classical handover procedures will be inherently resolved in the proposed multi-connectivity scheme. Simulation results are shown for a stand alone ultra dense small cells that use the same carrier frequency. It is shown that the number of mobility failures can considerably be decreased without a loss in the throughput performance gain of cell-edge users.

74 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of 5G research, standardization trials, and deployment challenges is provided, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.
Abstract: There is considerable pressure to define the key requirements of 5G, develop 5G standards, and perform technology trials as quickly as possible. Normally, these activities are best done in series but there is a desire to complete these tasks in parallel so that commercial deployments of 5G can begin by 2020. 5G will not be an incremental improvement over its predecessors; it aims to be a revolutionary leap forward in terms of data rates, latency, massive connectivity, network reliability, and energy efficiency. These capabilities are targeted at realizing high-speed connectivity, the Internet of Things, augmented virtual reality, the tactile internet, and so on. The requirements of 5G are expected to be met by new spectrum in the microwave bands (3.3-4.2 GHz), and utilizing large bandwidths available in mm-wave bands, increasing spatial degrees of freedom via large antenna arrays and 3-D MIMO, network densification, and new waveforms that provide scalability and flexibility to meet the varying demands of 5G services. Unlike the one size fits all 4G core networks, the 5G core network must be flexible and adaptable and is expected to simultaneously provide optimized support for the diverse 5G use case categories. In this paper, we provide an overview of 5G research, standardization trials, and deployment challenges. Due to the enormous scope of 5G systems, it is necessary to provide some direction in a tutorial article, and in this overview, the focus is largely user centric, rather than device centric. In addition to surveying the state of play in the area, we identify leading technologies, evaluating their strengths and weaknesses, and outline the key challenges ahead, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.

1,659 citations

Journal ArticleDOI
TL;DR: The current research state-of-the-art of 5G IoT, key enabling technologies, and main research trends and challenges in5G IoT are reviewed.

992 citations

Journal ArticleDOI
TL;DR: This paper provides a survey-style introduction to dense small cell networks and considers many research directions, namely, user association, interference management, energy efficiency, spectrum sharing, resource management, scheduling, backhauling, propagation modeling, and the economics of UDN deployment.
Abstract: The exponential growth and availability of data in all forms is the main booster to the continuing evolution in the communications industry. The popularization of traffic-intensive applications including high definition video, 3-D visualization, augmented reality, wearable devices, and cloud computing defines a new era of mobile communications. The immense amount of traffic generated by today’s customers requires a paradigm shift in all aspects of mobile networks. Ultradense network (UDN) is one of the leading ideas in this racetrack. In UDNs, the access nodes and/or the number of communication links per unit area are densified. In this paper, we provide a survey-style introduction to dense small cell networks. Moreover, we summarize and compare some of the recent achievements and research findings. We discuss the modeling techniques and the performance metrics widely used to model problems in UDN. Also, we present the enabling technologies for network densification in order to understand the state-of-the-art. We consider many research directions in this survey, namely, user association, interference management, energy efficiency, spectrum sharing, resource management, scheduling, backhauling, propagation modeling, and the economics of UDN deployment. Finally, we discuss the challenges and open problems to the researchers in the field or newcomers who aim to conduct research in this interesting and active area of research.

828 citations

Journal ArticleDOI
26 Sep 2018
TL;DR: In this article, a principled and scalable framework which takes into account delay, reliability, packet size, network architecture and topology (across access, edge, and core), and decision-making under uncertainty is provided.
Abstract: Ensuring ultrareliable and low-latency communication (URLLC) for 5G wireless networks and beyond is of capital importance and is currently receiving tremendous attention in academia and industry. At its core, URLLC mandates a departure from expected utility-based network design approaches, in which relying on average quantities (e.g., average throughput, average delay, and average response time) is no longer an option but a necessity. Instead, a principled and scalable framework which takes into account delay, reliability, packet size, network architecture and topology (across access, edge, and core), and decision-making under uncertainty is sorely lacking. The overarching goal of this paper is a first step to filling this void. Towards this vision, after providing definitions of latency and reliability, we closely examine various enablers of URLLC and their inherent tradeoffs. Subsequently, we focus our attention on a wide variety of techniques and methodologies pertaining to the requirements of URLLC, as well as their applications through selected use cases. These results provide crisp insights for the design of low-latency and high-reliability wireless networks.

779 citations

Journal ArticleDOI
TL;DR: This paper constitutes the first holistic tutorial on the development of ANN-based ML techniques tailored to the needs of future wireless networks and overviews how artificial neural networks (ANNs)-based ML algorithms can be employed for solving various wireless networking problems.
Abstract: In order to effectively provide ultra reliable low latency communications and pervasive connectivity for Internet of Things (IoT) devices, next-generation wireless networks can leverage intelligent, data-driven functions enabled by the integration of machine learning (ML) notions across the wireless core and edge infrastructure. In this context, this paper provides a comprehensive tutorial that overviews how artificial neural networks (ANNs)-based ML algorithms can be employed for solving various wireless networking problems. For this purpose, we first present a detailed overview of a number of key types of ANNs that include recurrent, spiking, and deep neural networks, that are pertinent to wireless networking applications. For each type of ANN, we present the basic architecture as well as specific examples that are particularly important and relevant wireless network design. Such ANN examples include echo state networks, liquid state machine, and long short term memory. Then, we provide an in-depth overview on the variety of wireless communication problems that can be addressed using ANNs, ranging from communication using unmanned aerial vehicles to virtual reality applications over wireless networks as well as edge computing and caching. For each individual application, we present the main motivation for using ANNs along with the associated challenges while we also provide a detailed example for a use case scenario and outline future works that can be addressed using ANNs. In a nutshell, this paper constitutes the first holistic tutorial on the development of ANN-based ML techniques tailored to the needs of future wireless networks.

666 citations