scispace - formally typeset
Search or ask a question
Author

Metukuri Mallikarjuna Reddy

Bio: Metukuri Mallikarjuna Reddy is an academic researcher from University of Hyderabad. The author has contributed to research in topics: K562 cells & Apoptosis. The author has an hindex of 2, co-authored 2 publications receiving 250 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that C-PC induces apoptosis in K562 cells by cytochrome c release from mitochondria into the cytosol, PARP cleavage and down regulation of Bcl-2.

213 citations

Journal ArticleDOI
TL;DR: A flow cytometry based DCFH-DA analysis and inhibitory studies with DPI revealed that NADPH oxidase-mediated generation of ROS is responsible for caspase-3 activation and subsequent induction of apoptosis in the K-562 cell line.

55 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review focuses on biochemical concepts of lipidPeroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting geneexpression and promoting cell death.
Abstract: Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.

3,647 citations

Journal ArticleDOI
TL;DR: The most recent data, besides confirming the mitochondrial role in tissue oxidative stress and protection, show interplay between mitochondria and other ROS cellular sources, so that activation of one can lead to activation of other sources.
Abstract: There is significant evidence that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. Mitochondria have been thought to both play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including stimulation of opening of permeability transition pores. Until recently, the functional significance of ROS sources different from mitochondria has received lesser attention. However, the most recent data, besides confirming the mitochondrial role in tissue oxidative stress and protection, show interplay between mitochondria and other ROS cellular sources, so that activation of one can lead to activation of other sources. Thus, it is currently accepted that in various conditions all cellular sources of ROS provide significant contribution to processes that oxidatively damage tissues and assure their survival, through mechanisms such as autophagy and apoptosis.

935 citations

Journal ArticleDOI
TL;DR: The understanding of the physiological functions of C-PC in humans has been improved by a mechanistic hypothesis that links the chemical properties of the phycocyanobilin chromophores ofC-PC to the natural antioxidant, bilirubin, and may explain the observed health benefits of C -PC intake.
Abstract: C-phycocyanin (C-PC) is a blue pigment in cyanobacteria, rhodophytes and cryptophytes with fluorescent and antioxidative properties. C-PC is presently extracted from open pond cultures of the cyanobacterium Arthrospira platensis although these cultures are not very productive and open for contaminating organisms. C-PC is considered a healthy ingredient in cyanobacterial-based foods and health foods while its colouring, fluorescent or antioxidant properties are utilised only to a minor extent. However, recent research and developments in C-PC synthesis and functionality have expanded the potential applications of C-PC in biotechnology, diagnostics, foods and medicine: The productivity of C-PC has been increased in heterotrophic, high cell density cultures of the rhodophyte Galdieria sulphuraria that are grown under well-controlled and axenic conditions. C-PC purification protocols based on various chromatographic principles or novel two-phase aqueous extraction methods have expanded in numbers and improved in performance. The functionality of C-PC as a fluorescent dye has been improved by chemical stabilisation of C-PC complexes, while protein engineering has also introduced increased stability and novel biospecific binding sites into C-PC fusion proteins. Finally, our understanding of the physiological functions of C-PC in humans has been improved by a mechanistic hypothesis that links the chemical properties of the phycocyanobilin chromophores of C-PC to the natural antioxidant, bilirubin, and may explain the observed health benefits of C-PC intake. This review outlines how C-PC is produced and utilised and discusses the novel C-PC synthesis procedures and applications.

577 citations

Journal ArticleDOI
22 Nov 2017
TL;DR: The biohybrid magnetic robots endowed with multifunctional capabilities by integrating desired structural and functional attributes from a biological matrix and an engineered coating are reported, representing a microrobotic platform that could be further developed for in vivo imaging–guided therapy and a proof of concept for the engineering of multifunctionsal microrOBotic and nanorobotic devices.
Abstract: Magnetic microrobots and nanorobots can be remotely controlled to propel in complex biological fluids with high precision by using magnetic fields. Their potential for controlled navigation in hard-to-reach cavities of the human body makes them promising miniaturized robotic tools to diagnose and treat diseases in a minimally invasive manner. However, critical issues, such as motion tracking, biocompatibility, biodegradation, and diagnostic/therapeutic effects, need to be resolved to allow preclinical in vivo development and clinical trials. We report biohybrid magnetic robots endowed with multifunctional capabilities by integrating desired structural and functional attributes from a biological matrix and an engineered coating. Helical microswimmers were fabricated from Spirulina microalgae via a facile dip-coating process in magnetite (Fe3O4) suspensions, superparamagnetic, and equipped with robust navigation capability in various biofluids. The innate properties of the microalgae allowed in vivo fluorescence imaging and remote diagnostic sensing without the need for any surface modification. Furthermore, in vivo magnetic resonance imaging tracked a swarm of microswimmers inside rodent stomachs, a deep organ where fluorescence-based imaging ceased to work because of its penetration limitation. Meanwhile, the microswimmers were able to degrade and exhibited selective cytotoxicity to cancer cell lines, subject to the thickness of the Fe3O4 coating, which could be tailored via the dip-coating process. The biohybrid microrobots reported herein represent a microrobotic platform that could be further developed for in vivo imaging-guided therapy and a proof of concept for the engineering of multifunctional microrobotic and nanorobotic devices.

536 citations

Journal ArticleDOI
TL;DR: A new strategy has been developed including the use of unexplored natural sources together with environmentally clean extraction techniques and advanced analytical tools to carry out the screening for novel natural functional compounds in algae and microalgae.

461 citations