scispace - formally typeset
Search or ask a question
Author

Michael A. Bolender

Bio: Michael A. Bolender is an academic researcher from Air Force Research Laboratory. The author has contributed to research in topics: Adaptive control & Control theory. The author has an hindex of 34, co-authored 89 publications receiving 4737 citations. Previous affiliations of Michael A. Bolender include University of Cincinnati & Ohio State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a control-oriented model in closed form is obtained by replacing complex force and moment functions with curve-fitted approximations, neglecting certain weak couplings, and neglecting slower portions of the system dynamics.
Abstract: Full simulation models for flexible air-breathing hypersonic vehicles include intricate couplings between the engine and flight dynamics, along with complex interplay between flexible and rigid modes, resulting in intractable systems for nonlinear control design. In this paper, starting from a high-fidelity model, a control-oriented model in closed form is obtained by replacing complex force and moment functions with curve-fitted approximations, neglecting certain weak couplings, and neglecting slower portions of the system dynamics. The process itself allows an understanding of the system-theoretic properties of the model, and enables the applicability of model-based nonlinear control techniques. Although the focus of this paper is on the development of the control-oriented model, an example of control design based on approximate feedback linearization is provided. Simulation results demonstrate that this technique achieves excellent tracking performance, even in the presence of moderate parameter variations. The fidelity of the truth model is then increased by including additional flexible effects, which render the original control design ineffective. A more elaborate model with an additional actuator is then employed to enhance the control authority of the vehicle, required to compensate for the new flexible effects, and a new design is provided.

696 citations

Journal ArticleDOI
TL;DR: In this article, a nonlinear, physics-based model of the longitudinal dynamics for an air-breathing hypersonic vehicle is developed, which captures a number of complex interactions between the propulsion system, aerodynamics, and structural dynamics.
Abstract: A nonlinear, physics-based model of the longitudinal dynamics for an air-breathing hypersonic vehicle is developed. The model is derived from first principles and captures a number of complex interactions between the propulsion system, aerodynamics, and structural dynamics. Unlike conventional aircraft, air-breathing hypersonic vehicles require that the propulsion system be highly integrated into the airframe. Furthermore, full-scale hypersonic aircraft tend to have very lightweight, flexible structures that have low natural frequencies. Therefore, the first bending mode of the fuselage is important, as its deflection affects the amount of airflow entering the engine, thus influencing the performance of the propulsion system. The equations of motion for the flexible aircraft are derivedusingLagrange’sequations.Theequationsof motioncaptureinertial couplingeffectsbetween thepitch and normal accelerations of the aircraft and the structural dynamics. The linearized aircraft dynamics are found to be unstableand,inmostcases,exhibitnonminimumphasebehavior.Thelinearizedmodelalsoindicatesthatthereisan aeroelastic mode that has a natural frequency more than twice the frequency of the fuselage bending mode, and the short-period mode is very strongly coupled with the bending mode of the fuselage.

669 citations

Journal ArticleDOI
TL;DR: In this article, a nonlinear robust adaptive controller for a flexible air-breathing hypersonic vehicle model is proposed, where a combination of nonlinear sequential loop closure and adaptive dynamic inversion is adopted for the design of a dynamic statefeedback controller that provides stable tracking of the velocity and altitude reference trajectories and imposes a desired set point for the angle of attack.
Abstract: This paper describes the design of a nonlinear robust adaptive controller for a flexible air-breathing hypersonic vehicle model. Because of the complexity of a first-principle model of the vehicle dynamics, a control-oriented model is adopted for design and stability analysis. This simplified model retains the dominant features of the higher-fidelity model, including the nonminimum phase behavior of the flight-path angle dynamics, the flexibility effects, and the strong coupling between the engine and flight dynamics. A combination of nonlinear sequential loop closure and adaptive dynamic inversion is adopted for the design of a dynamic state-feedback controller that provides stable tracking of the velocity and altitude reference trajectories and imposes a desired set point for the angle of attack. A complete characterization of the internal dynamics of the model is derived for a Lyapunov-based stability analysis of the closed-loop system, which includes the structural dynamics. The proposed methodology addresses the issue of stability robustness with respect to both parametric model uncertainty, which naturally arises when adopting reduced-complexity models for control design, and dynamic perturbations due to the flexible dynamics. Simulation results from the full nonlinear model show the effectiveness of the controller.

524 citations

Journal ArticleDOI
TL;DR: In this paper, a robust output-feedback control for a model of an airbreathing hypersonic vehicle is presented and evaluated by means of simulations of a full nonlinear model of the vehicle dynamics and is tested on a given range of operating conditions.
Abstract: This paper addresses issues related to robust output-feedback control for a model of an airbreathing hypersonic vehicle. The control objective is to provide robust velocity and altitude tracking in the presence of model uncertainties and varying flight conditions, using only limited state information. A baseline control design based on a robust full-order observer is shown to provide, in nonlinear simulations, insufficient robustness with respect to variations of the vehicle dynamics due to fuel consumption. An alternative approach to robust output-feedback design, which does not employ state estimation, is presented and shown to provide an increased level of performance. The proposed methodology reposes upon robust servomechanism theory and makes use of a novel internal model design. Robust compensation of the unstable zero dynamics of the plant is achieved by using measurements of pitch rate. The selection of the plant's output map by sensor placement is an integral part of the control design procedures, accomplished by preserving certain system structures that are favorable for robust control design. The performance of each controller is comparatively evaluated by means of simulations of a full nonlinear model of the vehicle dynamics and is tested on a given range of operating conditions.

284 citations

Proceedings ArticleDOI
15 Aug 2005
TL;DR: In this paper, a non-linear, physics-based model of the longitudinal dynamics for an air-breathing hypersonic vehicle is developed, which captures the complex interactions between the propulsion system, aerodynamics, and structural dynamics.
Abstract: : A non-linear, physics-based model of the longitudinal dynamics for an air-breathing hypersonic vehicle is developed. The model is derived from first principles and captures the complex interactions between the propulsion system, aerodynamics, and structural dynamics. Unlike conventional aircraft, hypersonic vehicles require that the propulsion system be highly integrated into the airframe. Furthermore, hypersonic aircraft tend to have very lightweight, flexible structures that have low natural frequencies. Therefore, the first bending mode of the fuselage is important as its deflection affects the amount of airflow entering the engine, thus influencing the performance of the propulsion system. The equations of motion for the flexible aircraft are derived using Lagrange's Equations. The equations-of-motion capture inertial coupling effects between the pitch and normal accelerations of the aircraft and the structural dynamics. The linearized aircraft dynamics are shown to be unstable, and in most cases, exhibit non-minimum, phase behavior. The linearized model also indicates that there is an aeroelastic mode that has a natural frequency more than twice the frequency of the fuselage bending mode. Furthermore, the short-period mode is very strongly coupled with the bending mode of the fuselage.

208 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The objective of the present paper is to survey control allocation algorithms, motivated by the rapidly growing range of applications that have expanded from the aerospace and maritime industries, where control allocation has its roots, to automotive, mechatronics, and other industries.

841 citations

Journal ArticleDOI
TL;DR: In this article, a control-oriented model in closed form is obtained by replacing complex force and moment functions with curve-fitted approximations, neglecting certain weak couplings, and neglecting slower portions of the system dynamics.
Abstract: Full simulation models for flexible air-breathing hypersonic vehicles include intricate couplings between the engine and flight dynamics, along with complex interplay between flexible and rigid modes, resulting in intractable systems for nonlinear control design. In this paper, starting from a high-fidelity model, a control-oriented model in closed form is obtained by replacing complex force and moment functions with curve-fitted approximations, neglecting certain weak couplings, and neglecting slower portions of the system dynamics. The process itself allows an understanding of the system-theoretic properties of the model, and enables the applicability of model-based nonlinear control techniques. Although the focus of this paper is on the development of the control-oriented model, an example of control design based on approximate feedback linearization is provided. Simulation results demonstrate that this technique achieves excellent tracking performance, even in the presence of moderate parameter variations. The fidelity of the truth model is then increased by including additional flexible effects, which render the original control design ineffective. A more elaborate model with an additional actuator is then employed to enhance the control authority of the vehicle, required to compensate for the new flexible effects, and a new design is provided.

696 citations

Journal ArticleDOI
TL;DR: In this article, a nonlinear, physics-based model of the longitudinal dynamics for an air-breathing hypersonic vehicle is developed, which captures a number of complex interactions between the propulsion system, aerodynamics, and structural dynamics.
Abstract: A nonlinear, physics-based model of the longitudinal dynamics for an air-breathing hypersonic vehicle is developed. The model is derived from first principles and captures a number of complex interactions between the propulsion system, aerodynamics, and structural dynamics. Unlike conventional aircraft, air-breathing hypersonic vehicles require that the propulsion system be highly integrated into the airframe. Furthermore, full-scale hypersonic aircraft tend to have very lightweight, flexible structures that have low natural frequencies. Therefore, the first bending mode of the fuselage is important, as its deflection affects the amount of airflow entering the engine, thus influencing the performance of the propulsion system. The equations of motion for the flexible aircraft are derivedusingLagrange’sequations.Theequationsof motioncaptureinertial couplingeffectsbetween thepitch and normal accelerations of the aircraft and the structural dynamics. The linearized aircraft dynamics are found to be unstableand,inmostcases,exhibitnonminimumphasebehavior.Thelinearizedmodelalsoindicatesthatthereisan aeroelastic mode that has a natural frequency more than twice the frequency of the fuselage bending mode, and the short-period mode is very strongly coupled with the bending mode of the fuselage.

669 citations

Journal ArticleDOI
Marc Bodson1
TL;DR: The major conclusion is that constrained optimization can be performed with computational requirements that fall within an order of magnitude of those of simpler methods.
Abstract: The performanceand computational requirements ofoptimization methodsfor control allocation areevaluated Two control allocation problems are formulated: a direct allocation method that preserves the directionality of the moment and a mixed optimization method that minimizes the error between the desired and the achieved momentsaswellasthecontroleffortTheconstrainedoptimizationproblemsaretransformedinto linearprograms so that they can be solved using well-tried linear programming techniques such as the simplex algorithm A variety of techniques that can be applied for the solution of the control allocation problem in order to accelerate computations are discussed Performance and computational requirements are evaluated using aircraft models with different numbers of actuators and with different properties In addition to the two optimization methods, three algorithms with low computational requirements are also implemented for comparison: a redistributed pseudoinverse technique, a quadratic programming algorithm, and a e xed-point method The major conclusion is that constrained optimization can be performed with computational requirements that fall within an order of magnitude of those of simpler methods The performance gains of optimization methods, measured in terms of the error between the desired and achieved moments, are found to be small on the average but sometimes signie cantAvariety ofissuesthataffecttheimplementation ofthevariousalgorithmsin ae ight-controlsystem are discussed

628 citations

Journal ArticleDOI
TL;DR: In this article, a nonlinear robust adaptive controller for a flexible air-breathing hypersonic vehicle model is proposed, where a combination of nonlinear sequential loop closure and adaptive dynamic inversion is adopted for the design of a dynamic statefeedback controller that provides stable tracking of the velocity and altitude reference trajectories and imposes a desired set point for the angle of attack.
Abstract: This paper describes the design of a nonlinear robust adaptive controller for a flexible air-breathing hypersonic vehicle model. Because of the complexity of a first-principle model of the vehicle dynamics, a control-oriented model is adopted for design and stability analysis. This simplified model retains the dominant features of the higher-fidelity model, including the nonminimum phase behavior of the flight-path angle dynamics, the flexibility effects, and the strong coupling between the engine and flight dynamics. A combination of nonlinear sequential loop closure and adaptive dynamic inversion is adopted for the design of a dynamic state-feedback controller that provides stable tracking of the velocity and altitude reference trajectories and imposes a desired set point for the angle of attack. A complete characterization of the internal dynamics of the model is derived for a Lyapunov-based stability analysis of the closed-loop system, which includes the structural dynamics. The proposed methodology addresses the issue of stability robustness with respect to both parametric model uncertainty, which naturally arises when adopting reduced-complexity models for control design, and dynamic perturbations due to the flexible dynamics. Simulation results from the full nonlinear model show the effectiveness of the controller.

524 citations