scispace - formally typeset
Search or ask a question
Author

Michael A. Gallis

Other affiliations: Purdue University
Bio: Michael A. Gallis is an academic researcher from Sandia National Laboratories. The author has contributed to research in topics: Direct simulation Monte Carlo & Knudsen number. The author has an hindex of 17, co-authored 45 publications receiving 849 citations. Previous affiliations of Michael A. Gallis include Purdue University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigate the potential that higher-order continuum equations may have to model the Knudsen layer, and compare their predictions to high-accuracy DSMC (direct simulation Monte Carlo) data, as well as a standard result from kinetic theory.
Abstract: The Knudsen layer is an important rarefaction phenomenon in gas flows in and around microdevices. Its accurate and efficient modeling is of critical importance in the design of such systems and in predicting their performance. In this paper we investigate the potential that higher-order continuum equations may have to model the Knudsen layer, and compare their predictions to high-accuracy DSMC (direct simulation Monte Carlo) data, as well as a standard result from kinetic theory. We find that, for a benchmark case, the most common higher-order continuum equation sets (Grad's 13 moment, Burnett, and super-Burnett equations) cannot capture the Knudsen layer. Variants of these equation families have, however, been proposed and some of them can qualitatively describe the Knudsen layer structure. To make quantitative comparisons, we obtain additional boundary conditions (needed for unique solutions to the higher-order equations) from kinetic theory. However, we find the quantitative agreement with kinetic theory and DSMC data is only slight.

106 citations

Journal ArticleDOI
TL;DR: The ability to capture the Knudsen layer within a continuum-fluid formulation suitable for current computational fluid dynamics toolboxes would offer distinct and practical computational advantages as mentioned in this paper, however, these depend on the characteristics of the local non-equilibrium existing up to one or two molecular mean free paths from the wall in any gas flow near a surface.
Abstract: In hypersonic aerodynamics and microflow device design, the momentum and energy fluxes to solid surfaces are often of critical importance. However, these depend on the characteristics of the Knudsen layer - the region of local non-equilibrium existing up to one or two molecular mean free paths from the wall in any gas flow near a surface. While the Knudsen layer has been investigated extensively using kinetic theory, the ability to capture it within a continuum-fluid formulation (in conjunction with slip boundary conditions) suitable for current computational fluid dynamics toolboxes would offer distinct and practical computational advantages.

105 citations

Journal ArticleDOI
TL;DR: In this article, an experimental apparatus has been developed to determine thermal accommodation coefficients for a variety of gas-surface combinations through measurement of the pressure dependence of the conductive heat flux between parallel plates separated by a gas-filled gap.
Abstract: An experimental apparatus has been developed to determine thermal accommodation coefficients for a variety of gas-surface combinations. Results are obtained primarily through measurement of the pressure dependence of the conductive heat flux between parallel plates separated by a gas-filled gap. Measured heat-flux data are used in a formula based on Direct Simulation Monte Carlo (DSMC) simulations to determine the coefficients. The assembly also features a complementary capability for measuring the variation in gas density between the plates using electron-beam fluorescence. Surface materials examined include 304 stainless steel, gold, aluminum, platinum, silicon, silicon nitride, and polysilicon. Effects of gas composition, surface roughness, and surface contamination have been investigated with this system; the behavior of gas mixtures has also been explored. Without special cleaning procedures, thermal accommodation coefficients for most materials and surface finishes were determined to be near 0.95, 0.85, and 0.45 for argon, nitrogen, and helium, respectively. Surface cleaning by in situ argon-plasma treatment reduced coefficient values by up to 0.10 for helium and by ∼0.05 for nitrogen and argon. Results for both single-species and gas-mixture experiments compare favorably to DSMC simulations.

97 citations

Journal ArticleDOI
TL;DR: This paper reviews some of the recent developments in experimental techniques and modelling methods for non–equilibrium gas flows, examining their advantages and drawbacks, and presents new results from the computational investigations into both hypersonic and microsystem flows using two distinct numerical methodologies.
Abstract: Fluid flows that do not have local equilibrium are characteristic of some of the new frontiers in engineering and technology, for example, high-speed high-altitude aerodynamics and the development of micrometre-sized fluid pumps, turbines and other devices. However, this area of fluid dynamics is poorly understood from both the experimental and simulation perspectives, which hampers the progress of these technologies. This paper reviews some of the recent developments in experimental techniques and modelling methods for non-equilibrium gas flows, examining their advantages and drawbacks. We also present new results from our computational investigations into both hypersonic and microsystem flows using two distinct numerical methodologies: the direct simulation Monte Carlo method and extended hydrodynamics. While the direct simulation approach produces excellent results and is used widely, extended hydrodynamics is not as well developed but is a promising candidate for future more complex simulations. Finally, we discuss some of the other situations where these simulation methods could be usefully applied, and look to the future of numerical tools for non-equilibrium flows.

96 citations

Journal ArticleDOI
TL;DR: New vibrational-translational (VT), vibratory-rotational- Translational-Translational(VRT) energy exchange, and dissociation models are developed based on QCT observations and maximum entropy considerations, which makes it feasible to upscale ab initio simulation to full nonequilibrium flow calculations.
Abstract: Quasi-classical trajectory (QCT) calculations are used to study state-specific ro-vibrational energy exchange and dissociation in the O2 + O system. Atom-diatom collisions with energy between 0.1 and 20 eV are calculated with a double many body expansion potential energy surface by Varandas and Pais [Mol. Phys. 65, 843 (1988)]. Inelastic collisions favor mono-quantum vibrational transitions at translational energies above 1.3 eV although multi-quantum transitions are also important. Post-collision vibrational favoring decreases first exponentially and then linearly as Δv increases. Vibrationally elastic collisions (Δv = 0) favor small ΔJ transitions while vibrationally inelastic collisions have equilibrium post-collision rotational distributions. Dissociation exhibits both vibrational and rotational favoring. New vibrational-translational (VT), vibrational-rotational-translational (VRT) energy exchange, and dissociation models are developed based on QCT observations and maximum entropy considerations. Full set of parameters for state-to-state modeling of oxygen is presented. The VT energy exchange model describes 22 000 state-to-state vibrational cross sections using 11 parameters and reproduces vibrational relaxation rates within 30% in the 2500-20 000 K temperature range. The VRT model captures 80 × 10(6) state-to-state ro-vibrational cross sections using 19 parameters and reproduces vibrational relaxation rates within 60% in the 5000-15 000 K temperature range. The developed dissociation model reproduces state-specific and equilibrium dissociation rates within 25% using just 48 parameters. The maximum entropy framework makes it feasible to upscale ab initio simulation to full nonequilibrium flow calculations.

70 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Jan 2006
TL;DR: The mysterious rattleback and its fluid counterpart:Developments in shear instabilities(Patrick Huerre,Falling clouds+Elisabeth Guazzelli)LEcotectural fluid mechanics%Herbert Huppert )
Abstract: 流体力学杂志“Journal of Fluid Mechanics”由剑桥大学教授George Batchelor在1956年5月创办,在国际流体力学界享有很高的学术声望,被公认为是流体力学最著名的学术刊物之一,2005年的影响因子为2.061,雄居同类期刊之首.在它创刊50周年之际,2006年5月JFM出版了第554卷的纪念特刊,其中刊登了现任主编(美国西北大学S.H.Davis教授和英国剑桥大学T.J.Pedley教授)合写的述评:“Editorial:JFM at50”,以JFM为背景,从独特的视角对近50年来流体力学的发展进行了简明的回顾和展望,并归纳了一系列非常有启发性的有趣统计数字.2006年7月21日在剑桥大学应用数学和理论物理研究所(DAMTP)举行了创刊50周年的庆祝会.下午2点,JFM的新老编辑和来宾会聚一堂,Pedley教授致开幕词,其后是5个精彩的报告:The mysterious rattleback and its fluid counterpart(Keith Moffatt),Developments in shear instabilities(Patrick Huerre),Falling clouds(Elisabeth Guazzelli),Ecotectural fluid mechanics(Paul Linden),The success of JFM(Herbert Huppert),最后由Davis教授致闭幕词.

767 citations

01 Jan 2002
TL;DR: In this article, the authors discuss the fluid-dynamic type equations derived from the Boltzmann equation as its asymptotic behavior for small mean free path and the boundary conditions that describe the behavior of the gas in the continuum limit.
Abstract: In this series of talks, I will discuss the fluid-dynamic-type equations that is derived from the Boltzmann equation as its the asymptotic behavior for small mean free path. The study of the relation of the two systems describing the behavior of a gas, the fluid-dynamic system and the Boltzmann system, has a long history and many works have been done. The Hilbert expansion and the Chapman–Enskog expansion are well-known among them. The behavior of a gas in the continuum limit, however, is not so simple as is widely discussed by superficial understanding of these solutions. The correct behavior has to be investigated by classifying the physical situations. The results are largely different depending on the situations. There is an important class of problems for which neither the Euler equations nor the Navier–Stokes give the correct answer. In these two expansions themselves, an initialor boundaryvalue problem is not taken into account. We will discuss the fluid-dynamic-type equations together with the boundary conditions that describe the behavior of the gas in the continuum limit by appropriately classifying the physical situations and taking the boundary condition into account. Here the result for the time-independent case is summarized. The time-dependent case will also be mentioned in the talk. The velocity distribution function approaches a Maxwellian fe, whose parameters depend on the position in the gas, in the continuum limit. The fluid-dynamictype equations that determine the macroscopic variables in the limit differ considerably depending on the character of the Maxwellian. The systems are classified by the size of |fe− fe0|/fe0, where fe0 is the stationary Maxwellian with the representative density and temperature in the gas. (1) |fe − fe0|/fe0 = O(Kn) (Kn : Knudsen number, i.e., Kn = `/L; ` : the reference mean free path. L : the reference length of the system) : S system (the incompressible Navier–Stokes set with the energy equation modified). (1a) |fe − fe0|/fe0 = o(Kn) : Linear system (the Stokes set). (2) |fe − fe0|/fe0 = O(1) with | ∫ ξifedξ|/ ∫ |ξi|fedξ = O(Kn) (ξi : the molecular velocity) : SB system [the temperature T and density ρ in the continuum limit are determined together with the flow velocity vi of the first order of Kn amplified by 1/Kn (the ghost effect), and the thermal stress of the order of (Kn) must be retained in the equations (non-Navier–Stokes effect). The thermal creep[1] in the boundary condition must be taken into account. (3) |fe − fe0|/fe0 = O(1) with | ∫ ξifedξ|/ ∫ |ξi|fedξ = O(1) : E+VB system (the Euler and viscous boundary-layer sets). E system (Euler set) in the case where the boundary is an interface of the gas and its condensed phase. The fluid-dynamic systems are classified in terms of the macroscopic parameters that appear in the boundary condition. Let Tw and δTw be, respectively, the characteristic values of the temperature and its variation of the boundary. Then, the fluid-dynamic systems mentioned above are classified with the nondimensional temperature variation δTw/Tw and Reynolds number Re as shown in Fig. 1. In the region SB, the classical gas dynamics is inapplicable, that is, neither the Euler

501 citations

Journal ArticleDOI
TL;DR: The cascaded digital lattice Boltzmann automata described here, provides a method with which to achieve stable collision operators down to the limit of zero viscosity.
Abstract: Lattice Boltzmann methods are of limited applicability for direct numerical simulation of turbulent flow due to instabilities in the zero viscosity limit. We observe that this is caused by an insufficient degree of Galilean invariance of the relaxation-type Lattice Boltzmann collision operator. The cascaded digital lattice Boltzmann automata described here, provides a method with which to achieve stable collision operators down to the limit of zero viscosity.

314 citations

Journal ArticleDOI
TL;DR: In this article, a unified model for gas transport in organic nanopores of shale gas reservoirs is presented, accounting for the effects of coupling the real gas effect, stress dependence and an adsorption layer on gas transport.

293 citations