scispace - formally typeset
Search or ask a question
Author

Michael A. Jensen

Bio: Michael A. Jensen is an academic researcher from Brigham Young University. The author has contributed to research in topics: MIMO & Communication channel. The author has an hindex of 36, co-authored 243 publications receiving 7263 citations. Previous affiliations of Michael A. Jensen include University of California, San Diego & University of California, Los Angeles.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper reviews recent research findings concerning antennas and propagation in MIMO systems and considers issues considered include channel capacity computation, channel measurement and modeling approaches, and the impact of antenna element properties and array configuration on system performance.
Abstract: Multiple-input-multiple-output (MIMO) wireless systems use multiple antenna elements at transmit and receive to offer improved capacity over single antenna topologies in multipath channels In such systems, the antenna properties as well as the multipath channel characteristics play a key role in determining communication performance This paper reviews recent research findings concerning antennas and propagation in MIMO systems Issues considered include channel capacity computation, channel measurement and modeling approaches, and the impact of antenna element properties and array configuration on system performance Throughout the discussion, outstanding research questions in these areas are highlighted

985 citations

Journal ArticleDOI
TL;DR: A model is proposed that employs the clustered "double Poisson" time-of-arrival model proposed by Saleh and Valenzuela (1987), and the observed angular distribution is also clustered with uniformly distributed clusters and arrivals within clusters that have a Laplacian distribution.
Abstract: Most previously proposed statistical models for the indoor multipath channel include only time of arrival characteristics. However, in order to use statistical models in simulating or analyzing the performance of systems employing spatial diversity combining, information about angle of arrival statistics is also required. Ideally, it would be desirable to characterize the full spare-time nature of the channel. In this paper, a system is described that was used to collect simultaneous time and angle of arrival data at 7 GHz. Data processing methods are outlined, and results obtained from data taken in two different buildings are presented. Based on the results, a model is proposed that employs the clustered "double Poisson" time-of-arrival model proposed by Saleh and Valenzuela (1987). The observed angular distribution is also clustered with uniformly distributed clusters and arrivals within clusters that have a Laplacian distribution.

704 citations

Journal ArticleDOI
TL;DR: A new framework for the analysis of multiple-input multiple-output (MIMO) wireless systems is introduced to account for mutual coupling effects in the antenna arrays and the multiport interactions at transmit and receive are characterized by representing the channel using a scattering parameter matrix.
Abstract: A new framework for the analysis of multiple-input multiple-output (MIMO) wireless systems is introduced to account for mutual coupling effects in the antenna arrays. The multiport interactions at transmit and receive are characterized by representing the channel using a scattering parameter matrix. A new power constraint that limits the average radiated power is also introduced. The capacity of the MIMO system with mutual coupling is defined as the maximum mutual information of the transmit and receive vectors over all possible transmit signaling and receive loading. Full-wave electromagnetic antenna simulations combined with a simple path-based channel model are used to demonstrate the utility of the method.

614 citations

Journal ArticleDOI
01 Jan 1995
TL;DR: In this article, the authors investigated the effect of the tissue location and physical model on the antenna performance and found that the head and hand absorb between 48 and 68% of the power delivered to the antenna.
Abstract: In personal communications, the electromagnetic interaction between handset-mounted antennas and the nearby biological tissue is a key consideration. This paper presents a thorough investigation of this antenna-tissue interaction using the finite-difference time-domain (FDTD) electromagnetic simulation approach with detailed models of real-life antennas on a transceiver handset. The monopole, side-mounted planar inverted F, top-mounted bent inverted F, and back-mounted planar inverted F antennas are selected as representative examples of external and internal configurations. Detailed models of the human head and hand are implemented to investigate the effects of the tissue location and physical model on the antenna performance. Experimental results are provided which support the computationally obtained conclusions. The specific absorption rate (SAR) in the tissue is examined for several different antenna/handset configurations. It is found that for a head-handset separation of 2 cm, the SAR in the head has a peak value between 0.9 and 3.8 mW/g and an average value between 0.06 and 0.10 mW/g for 1 W of power delivered to the antenna. Additionally, the head and hand absorb between 48 and 68% of the power delivered to the antenna. >

479 citations

Journal ArticleDOI
TL;DR: An experimental measurement platform capable of providing the narrowband channel transfer matrix for wireless communications scenarios is presented and a discussion of the relationship between multipath richness and path loss, as well as their joint role in determining channel capacity is discussed.
Abstract: Detailed performance assessment of space-time coding algorithms in realistic channels is critically dependent upon accurate knowledge of the wireless channel spatial characteristics. This paper presents an experimental measurement platform capable of providing the narrowband channel transfer matrix for wireless communications scenarios. The system is used to directly measure key multiple-input-multiple-output parameters in an indoor environment at 2.45 GHz. Linear antenna arrays of different sizes and construction with up to ten elements at transmit and receive are utilized in the measurement campaign. This data is analyzed to reveal channel properties such as transfer matrix element statistical distributions and temporal and spatial correlation. Additionally, the impact of parameters such as antenna element polarization, directivity, and array size on channel capacity are highlighted. The paper concludes with a discussion of the relationship between multipath richness and path loss, as well as their joint role in determining channel capacity.

329 citations


Cited by
More filters
Book
01 Jan 2005

9,038 citations

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations

Journal ArticleDOI
TL;DR: In this paper, a new type of metallic structure has been developed that is characterized by having high surface impedance, which is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements and distributed in a two-dimensional lattice.
Abstract: A new type of metallic electromagnetic structure has been developed that is characterized by having high surface impedance. Although it is made of continuous metal, and conducts dc currents, it does not conduct ac currents within a forbidden frequency band. Unlike normal conductors, this new surface does not support propagating surface waves, and its image currents are not phase reversed. The geometry is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements, and distributed in a two-dimensional lattice. The surface can be described using solid-state band theory concepts, even though the periodicity is much less than the free-space wavelength. This unique material is applicable to a variety of electromagnetic problems, including new kinds of low-profile antennas.

4,264 citations

Journal ArticleDOI
TL;DR: This paper considers transmit precoding and receiver combining in mmWave systems with large antenna arrays and develops algorithms that accurately approximate optimal unconstrained precoders and combiners such that they can be implemented in low-cost RF hardware.
Abstract: Millimeter wave (mmWave) signals experience orders-of-magnitude more pathloss than the microwave signals currently used in most wireless applications and all cellular systems. MmWave systems must therefore leverage large antenna arrays, made possible by the decrease in wavelength, to combat pathloss with beamforming gain. Beamforming with multiple data streams, known as precoding, can be used to further improve mmWave spectral efficiency. Both beamforming and precoding are done digitally at baseband in traditional multi-antenna systems. The high cost and power consumption of mixed-signal devices in mmWave systems, however, make analog processing in the RF domain more attractive. This hardware limitation restricts the feasible set of precoders and combiners that can be applied by practical mmWave transceivers. In this paper, we consider transmit precoding and receiver combining in mmWave systems with large antenna arrays. We exploit the spatial structure of mmWave channels to formulate the precoding/combining problem as a sparse reconstruction problem. Using the principle of basis pursuit, we develop algorithms that accurately approximate optimal unconstrained precoders and combiners such that they can be implemented in low-cost RF hardware. We present numerical results on the performance of the proposed algorithms and show that they allow mmWave systems to approach their unconstrained performance limits, even when transceiver hardware constraints are considered.

3,146 citations

Journal ArticleDOI
TL;DR: Very large MIMO as mentioned in this paper is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation.
Abstract: This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.

2,717 citations