scispace - formally typeset
Search or ask a question
Author

Michael A. Nielsen

Bio: Michael A. Nielsen is an academic researcher from University of Queensland. The author has contributed to research in topics: Quantum information & Quantum algorithm. The author has an hindex of 57, co-authored 120 publications receiving 55138 citations. Previous affiliations of Michael A. Nielsen include California Institute of Technology & Perimeter Institute for Theoretical Physics.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors give an explicit way to experimentally determine the evolution operators which completely describe the dynamics of a quantum-mechanical black box: an arbitrary open quantum system.
Abstract: We give an explicit way to experimentally determine the evolution operators which completely describe the dynamics of a quantum-mechanical black box: an arbitrary open quantum system. We show necessary and sufficient conditions for this to be possible and illustrate the general theory by considering specifically one-and two-quantum-bit systems. These procedures may be useful in the comparative evaluation of experimental quantum measurement, communication and computation systems.

834 citations

Journal ArticleDOI
TL;DR: A generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection, is described.
Abstract: We describe a generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection. For universal quantum computation, a nonlinear element is required. This can be satisfied by adding to the toolbox any single-mode non-Gaussian measurement, while the initial cluster state itself remains Gaussian. Homodyne detection alone suffices to perform an arbitrary multimode Gaussian transformation via the cluster state. We also propose an experiment to demonstrate cluster-based error reduction when implementing Gaussian operations.

653 citations

Journal ArticleDOI
TL;DR: A quantity called {ital coherent} {ital information}, which measures the amount of quantum information conveyed in the noisy channel, can never be increased by quantum information processing, and it yields a simple necessary and sufficient condition for the existence of perfect quantum error correction.
Abstract: This paper investigates properties of noisy quantum information channels We define a quantity called coherent information, which measures the amount of quantum information conveyed in the noisy channel This quantity can never be increased by quantum information processing, and it yields a simple necessary and sufficient condition for the existence of perfect quantum error correction \textcopyright{} 1996 The American Physical Society

624 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identify a gold standard for quantum information processing, a single measure of distance that can be used to compare and contrast different experiments, and enumerate a set of criteria that such a distance measure must satisfy to be both experimentally and theoretically meaningful.
Abstract: With growing success in experimental implementations it is critical to identify a gold standard for quantum information processing, a single measure of distance that can be used to compare and contrast different experiments. We enumerate a set of criteria that such a distance measure must satisfy to be both experimentally and theoretically meaningful. We then assess a wide range of possible measures against these criteria, before making a recommendation as to the best measures to use in characterizing quantum information processing.

622 citations

Journal ArticleDOI
TL;DR: In this article, a simple formula for the average fidelity between a unitary quantum gate and a general quantum operation on a qudit was presented, generalizing the formula for qubits found by Bowdrey et al.

571 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Dec 2010
TL;DR: This chapter discusses quantum information theory, public-key cryptography and the RSA cryptosystem, and the proof of Lieb's theorem.
Abstract: Part I. Fundamental Concepts: 1. Introduction and overview 2. Introduction to quantum mechanics 3. Introduction to computer science Part II. Quantum Computation: 4. Quantum circuits 5. The quantum Fourier transform and its application 6. Quantum search algorithms 7. Quantum computers: physical realization Part III. Quantum Information: 8. Quantum noise and quantum operations 9. Distance measures for quantum information 10. Quantum error-correction 11. Entropy and information 12. Quantum information theory Appendices References Index.

14,825 citations

Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Abstract: All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory} But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding However, it appeared that this new resource is very complex and difficult to detect Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon A basic role of entanglement witnesses in detection of entanglement is emphasized

6,980 citations