scispace - formally typeset
Search or ask a question
Author

Michael A. Resnick

Bio: Michael A. Resnick is an academic researcher from National Institutes of Health. The author has contributed to research in topics: DNA repair & Gene. The author has an hindex of 71, co-authored 235 publications receiving 18388 citations. Previous affiliations of Michael A. Resnick include University of North Carolina at Chapel Hill & East Tennessee State University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that throughout cancer genomes APOBEC-mediated mutagenesis is pervasive and correlates withAPOBEC mRNA levels, and that ubiquitous APOBec-mediated Mutagenesis are carcinogenic.
Abstract: Recent studies indicate that a subclass of APOBEC cytidine deaminases, which convert cytosine to uracil during RNA editing and retrovirus or retrotransposon restriction, may induce mutation clusters in human tumors. We show here that throughout cancer genomes APOBEC-mediated mutagenesis is pervasive and correlates with APOBEC mRNA levels. Mutation clusters in whole-genome and exome data sets conformed to the stringent criteria indicative of an APOBEC mutation pattern. Applying these criteria to 954,247 mutations in 2,680 exomes from 14 cancer types, mostly from The Cancer Genome Atlas (TCGA), showed a significant presence of the APOBEC mutation pattern in bladder, cervical, breast, head and neck, and lung cancers, reaching 68% of all mutations in some samples. Within breast cancer, the HER2-enriched subtype was clearly enriched for tumors with the APOBEC mutation pattern, suggesting that this type of mutagenesis is functionally linked with cancer development. The APOBEC mutation pattern also extended to cancer-associated genes, implying that ubiquitous APOBEC-mediated mutagenesis is carcinogenic.

1,004 citations

Journal ArticleDOI
22 May 1987-Science
TL;DR: Four widely used in vitro assays for genetic toxicity were evaluated for their ability to predict the carcinogenicity of selected chemicals in rodents, indicating that chemicals positive in one in vitro assay tended to be positive in the other in vitro Assays.
Abstract: Four widely used in vitro assays for genetic toxicity were evaluated for their ability to predict the carcinogenicity of selected chemicals in rodents. These assays were mutagenesis in Salmonella and mouse lymphoma cells and chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells. Seventy-three chemicals recently tested in 2-year carcinogenicity studies conducted by the National Cancer Institute and the National Toxicology Program were used in this evaluation. Test results from the four in vitro assays did not show significant differences in individual concordance with the rodent carcinogenicity results; the concordance of each assay was approximately 60 percent. Within the limits of this study there was no evidence of complementarity among the four assays, and no battery of tests constructed from these assays improved substantially on the overall performance of the Salmonella assay. The in vitro assays which represented a range of three cell types and four end points did show substantial agreement among themselves, indicating that chemicals positive in one in vitro assay tended to be positive in the other in vitro assays.

762 citations

Journal ArticleDOI
TL;DR: Results from the testing of 108 coded chemicals in Chinese hamster ovary cells for the induction of chromosome aberrations and sister chromatid exchanges (SCEs) are presented.
Abstract: Results from the testing of 108 coded chemicals in Chinese hamster ovary (CHO) cells for the induction of chromosome aberrations and sister chromatid exchanges (SCEs) are presented. All chemicals were tested with and without exogenous metabolic activation, using protocols designed to allow testing up to toxic doses. Cell harvest times could also be extended if chemical-induced cell cycle delay was seen. Chromosome aberrations were induced by 43 of the chemicals, and 66 induced SCEs; 37 of the chemicals were positive for both endpoints.

584 citations

Journal ArticleDOI
TL;DR: This Review describes the identification and functionality of REs and highlights the inclusion of non-canonical REs that expand the universe of genes and regulation mechanisms in the p53 tumour suppressor network.
Abstract: The p53 tumour suppressor is modified through mutation or changes in expression in most cancers, leading to the altered regulation of hundreds of genes that are directly influenced by this sequence-specific transcription factor. Central to the p53 master regulatory network are the target response element (RE) sequences. The extent of p53 transactivation and transcriptional repression is influenced by many factors, including p53 levels, cofactors and the specific RE sequences, all of which contribute to the role that p53 has in the aetiology of cancer. This Review describes the identification and functionality of REs and highlights the inclusion of non-canonical REs that expand the universe of genes and regulation mechanisms in the p53 tumour suppressor network.

551 citations

Journal ArticleDOI
TL;DR: It is concluded that there are 1 to 2 double-strand breaks per lethal event in diploid cells incapable of repairing these breaks, indicating a requirement for protein synthesis.
Abstract: With the use of neutral sucrose sedimentation techniques, the size of unirradiated nuclear DNA and the repair of double-strand breaks induced in it by ionizing radiation have been determined in both wild-type and homozygous rad52 diploids of the yeast Saccharomyces cerevisiae. The number average molecular weight of unirradiated DNA in these experiments is 3.0×108±0.3 Daltons. Double-strand breaks are induced with a frequency of 0.58×10-10 per Daltonkrad in the range of 25 to 100 krad. Since repair at low doses is observed in wild-type but not homozygous rad52 strains, the corresponding rad52 gene product is concluded to have a role in the repair process. Cycloheximide was also observed to inhibit repair to a limited extent indicating a requirement for protein synthesis. Based on the sensitivity of various mutants and the induction frequency of double-strand breaks, it is concluded that there are 1 to 2 double-strand breaks per lethal event in diploid cells incapable of repairing these breaks.

468 citations


Cited by
More filters
Journal ArticleDOI
Michael S. Lawrence1, Petar Stojanov2, Petar Stojanov1, Paz Polak2, Paz Polak1, Paz Polak3, Gregory V. Kryukov2, Gregory V. Kryukov3, Gregory V. Kryukov1, Kristian Cibulskis1, Andrey Sivachenko1, Scott L. Carter1, Chip Stewart1, Craig H. Mermel1, Craig H. Mermel2, Steven A. Roberts4, Adam Kiezun1, Peter S. Hammerman1, Peter S. Hammerman2, Aaron McKenna5, Aaron McKenna1, Yotam Drier, Lihua Zou1, Alex H. Ramos1, Trevor J. Pugh2, Trevor J. Pugh1, Nicolas Stransky1, Elena Helman1, Elena Helman6, Jaegil Kim1, Carrie Sougnez1, Lauren Ambrogio1, Elizabeth Nickerson1, Erica Shefler1, Maria L. Cortes1, Daniel Auclair1, Gordon Saksena1, Douglas Voet1, Michael S. Noble1, Daniel DiCara1, Pei Lin1, Lee Lichtenstein1, David I. Heiman1, Timothy Fennell1, Marcin Imielinski2, Marcin Imielinski1, Bryan Hernandez1, Eran Hodis1, Eran Hodis2, Sylvan C. Baca1, Sylvan C. Baca2, Austin M. Dulak2, Austin M. Dulak1, Jens G. Lohr2, Jens G. Lohr1, Dan A. Landau2, Dan A. Landau7, Dan A. Landau1, Catherine J. Wu2, Jorge Melendez-Zajgla, Alfredo Hidalgo-Miranda, Amnon Koren1, Amnon Koren2, Steven A. McCarroll2, Steven A. McCarroll1, Jaume Mora8, Ryan S. Lee2, Ryan S. Lee9, Brian D. Crompton2, Brian D. Crompton9, Robert C. Onofrio1, Melissa Parkin1, Wendy Winckler1, Kristin G. Ardlie1, Stacey Gabriel1, Charles W. M. Roberts2, Charles W. M. Roberts9, Jaclyn A. Biegel10, Kimberly Stegmaier1, Kimberly Stegmaier2, Kimberly Stegmaier9, Adam J. Bass2, Adam J. Bass1, Levi A. Garraway1, Levi A. Garraway2, Matthew Meyerson2, Matthew Meyerson1, Todd R. Golub, Dmitry A. Gordenin4, Shamil R. Sunyaev3, Shamil R. Sunyaev2, Shamil R. Sunyaev1, Eric S. Lander6, Eric S. Lander2, Eric S. Lander1, Gad Getz2, Gad Getz1 
11 Jul 2013-Nature
TL;DR: A fundamental problem with cancer genome studies is described: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds and the list includes many implausible genes, suggesting extensive false-positive findings that overshadow true driver events.
Abstract: Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer. These studies involve the sequencing of matched tumour-normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour-normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.

4,411 citations

01 Jan 2000
TL;DR: This annex is aimed at providing a sound basis for conclusions regarding the number of significant radiation accidents that have occurred, the corresponding levels of radiation exposures and numbers of deaths and injuries, and the general trends for various practices, in the context of the Committee's overall evaluations of the levels and effects of exposure to ionizing radiation.
Abstract: NOTE The report of the Committee without its annexes appears as Official Records of the General Assembly, Sixty-third Session, Supplement No. 46. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The country names used in this document are, in most cases, those that were in use at the time the data were collected or the text prepared. In other cases, however, the names have been updated, where this was possible and appropriate, to reflect political changes. Scientific Annexes Annex A. Medical radiation exposures Annex B. Exposures of the public and workers from various sources of radiation INTROdUCTION 1. In the course of the research and development for and the application of atomic energy and nuclear technologies, a number of radiation accidents have occurred. Some of these accidents have resulted in significant health effects and occasionally in fatal outcomes. The application of technologies that make use of radiation is increasingly widespread around the world. Millions of people have occupations related to the use of radiation, and hundreds of millions of individuals benefit from these uses. Facilities using intense radiation sources for energy production and for purposes such as radiotherapy, sterilization of products, preservation of foodstuffs and gamma radiography require special care in the design and operation of equipment to avoid radiation injury to workers or to the public. Experience has shown that such technology is generally used safely, but on occasion controls have been circumvented and serious radiation accidents have ensued. 2. Reviews of radiation exposures from accidents have been presented in previous UNSCEAR reports. The last report containing an exclusive chapter on exposures from accidents was the UNSCEAR 1993 Report [U6]. 3. This annex is aimed at providing a sound basis for conclusions regarding the number of significant radiation accidents that have occurred, the corresponding levels of radiation exposures and numbers of deaths and injuries, and the general trends for various practices. Its conclusions are to be seen in the context of the Committee's overall evaluations of the levels and effects of exposure to ionizing radiation. 4. The Committee's evaluations of public, occupational and medical diagnostic exposures are mostly concerned with chronic exposures of …

3,924 citations

Journal ArticleDOI
TL;DR: Tumor Immune Estimation Resource (TIMER) is presented to comprehensively investigate molecular characterization of tumor-immune interactions and provides a user-friendly web interface for dynamic analysis and visualization of these associations, which will be of broad utilities to cancer researchers.
Abstract: Recent clinical successes of cancer immunotherapy necessitate the investigation of the interaction between malignant cells and the host immune system. However, elucidation of complex tumor-immune interactions presents major computational and experimental challenges. Here, we present Tumor Immune Estimation Resource (TIMER; cistrome.shinyapps.io/timer) to comprehensively investigate molecular characterization of tumor-immune interactions. Levels of six tumor-infiltrating immune subsets are precalculated for 10,897 tumors from 32 cancer types. TIMER provides 6 major analytic modules that allow users to interactively explore the associations between immune infiltrates and a wide spectrum of factors, including gene expression, clinical outcomes, somatic mutations, and somatic copy number alterations. TIMER provides a user-friendly web interface for dynamic analysis and visualization of these associations, which will be of broad utilities to cancer researchers. Cancer Res; 77(21); e108-10. ©2017 AACR.

3,236 citations

Journal ArticleDOI
01 May 2009-Cell
TL;DR: Control of p53's transcriptional activity is crucial for determining which p53 response is activated, a decision that must be understood if the next generation of drugs that selectively activate or inhibit p53 are to be exploited efficiently.

2,775 citations

Journal Article
TL;DR: In this paper, the coding exons of the family of 518 protein kinases were sequenced in 210 cancers of diverse histological types to explore the nature of the information that will be derived from cancer genome sequencing.
Abstract: AACR Centennial Conference: Translational Cancer Medicine-- Nov 4-8, 2007; Singapore PL02-05 All cancers are due to abnormalities in DNA. The availability of the human genome sequence has led to the proposal that resequencing of cancer genomes will reveal the full complement of somatic mutations and hence all the cancer genes. To explore the nature of the information that will be derived from cancer genome sequencing we have sequenced the coding exons of the family of 518 protein kinases, ~1.3Mb DNA per cancer sample, in 210 cancers of diverse histological types. Despite the screen being directed toward the coding regions of a gene family that has previously been strongly implicated in oncogenesis, the results indicate that the majority of somatic mutations detected are “passengers”. There is considerable variation in the number and pattern of these mutations between individual cancers, indicating substantial diversity of processes of molecular evolution between cancers. The imprints of exogenous mutagenic exposures, mutagenic treatment regimes and DNA repair defects can all be seen in the distinctive mutational signatures of individual cancers. This systematic mutation screen and others have previously yielded a number of cancer genes that are frequently mutated in one or more cancer types and which are now anticancer drug targets (for example BRAF , PIK3CA , and EGFR ). However, detailed analyses of the data from our screen additionally suggest that there exist a large number of additional “driver” mutations which are distributed across a substantial number of genes. It therefore appears that cells may be able to utilise mutations in a large repertoire of potential cancer genes to acquire the neoplastic phenotype. However, many of these genes are employed only infrequently. These findings may have implications for future anticancer drug development.

2,737 citations