scispace - formally typeset
Search or ask a question
Author

Michael A. Riehle

Bio: Michael A. Riehle is an academic researcher from University of Arizona. The author has contributed to research in topics: Anopheles stephensi & Aedes aegypti. The author has an hindex of 28, co-authored 53 publications receiving 7741 citations. Previous affiliations of Michael A. Riehle include University of Georgia & University of Wisconsin-Madison.


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
Daniel E. Neafsey1, Robert M. Waterhouse, Mohammad Reza Abai2, Sergey Aganezov3, Max A. Alekseyev3, James E. Allen4, James Amon, Bruno Arcà5, Peter Arensburger6, Gleb N. Artemov7, Lauren A. Assour8, Hamidreza Basseri2, Aaron M. Berlin1, Bruce W. Birren1, Stéphanie Blandin9, Stéphanie Blandin10, Andrew I. Brockman11, Thomas R. Burkot12, Austin Burt11, Clara S. Chan13, Cedric Chauve14, Joanna C. Chiu15, Mikkel B. Christensen4, Carlo Costantini16, Victoria L.M. Davidson17, Elena Deligianni18, Tania Dottorini11, Vicky Dritsou19, Stacey Gabriel1, Wamdaogo M. Guelbeogo, Andrew Brantley Hall20, Mira V. Han21, Thaung Hlaing, Daniel S.T. Hughes22, Daniel S.T. Hughes4, Adam M. Jenkins23, Xiaofang Jiang20, Irwin Jungreis13, Evdoxia G. Kakani24, Evdoxia G. Kakani19, Maryam Kamali20, Petri Kemppainen25, Ryan C. Kennedy26, Ioannis K. Kirmitzoglou11, Ioannis K. Kirmitzoglou27, Lizette L. Koekemoer28, Njoroge Laban, Nicholas Langridge4, Mara K. N. Lawniczak11, Manolis Lirakis29, Neil F. Lobo8, Ernesto Lowy4, Robert M. MacCallum11, Chunhong Mao20, Gareth Maslen4, Charles Mbogo30, Jenny McCarthy6, Kristin Michel17, Sara N. Mitchell24, Wendy Moore31, Katherine A. Murphy15, Anastasia N. Naumenko20, Tony Nolan11, Eva Maria Novoa13, Samantha M. O’Loughlin11, Chioma Oringanje31, Mohammad Ali Oshaghi2, Nazzy Pakpour15, Philippos Aris Papathanos11, Philippos Aris Papathanos19, Ashley Peery20, Michael Povelones32, Anil Prakash33, David P. Price34, Ashok Rajaraman14, Lisa J. Reimer35, David C. Rinker36, Antonis Rokas37, Tanya L. Russell12, N’Fale Sagnon, Maria V. Sharakhova20, Terrance Shea1, Felipe A. Simão38, Felipe A. Simão39, Frédéric Simard16, Michel A. Slotman40, Pradya Somboon41, V. N. Stegniy7, Claudio J. Struchiner42, Claudio J. Struchiner43, Gregg W.C. Thomas44, Marta Tojo45, Pantelis Topalis18, Jose M. C. Tubio46, Maria F. Unger8, John Vontas29, Catherine Walton25, Craig S. Wilding47, Judith H. Willis48, Yi-Chieh Wu13, Yi-Chieh Wu49, Guiyun Yan50, Evgeny M. Zdobnov38, Evgeny M. Zdobnov39, Xiaofan Zhou37, Flaminia Catteruccia24, Flaminia Catteruccia19, George K. Christophides11, Frank H. Collins8, Robert S. Cornman48, Andrea Crisanti19, Andrea Crisanti11, Martin J. Donnelly46, Martin J. Donnelly35, Scott J. Emrich8, Michael C. Fontaine8, Michael C. Fontaine51, William M. Gelbart24, Matthew W. Hahn44, Immo A. Hansen34, Paul I. Howell52, Fotis C. Kafatos11, Manolis Kellis13, Daniel Lawson4, Christos Louis18, Shirley Luckhart15, Marc A. T. Muskavitch23, Marc A. T. Muskavitch53, José M. C. Ribeiro, Michael A. Riehle31, Igor V. Sharakhov20, Zhijian Tu20, Laurence J. Zwiebel37, Nora J. Besansky8 
Broad Institute1, Tehran University of Medical Sciences2, George Washington University3, European Bioinformatics Institute4, Sapienza University of Rome5, Temple University6, Tomsk State University7, University of Notre Dame8, Centre national de la recherche scientifique9, French Institute of Health and Medical Research10, Imperial College London11, James Cook University12, Massachusetts Institute of Technology13, Simon Fraser University14, University of California, Davis15, Institut de recherche pour le développement16, Kansas State University17, Foundation for Research & Technology – Hellas18, University of Perugia19, Virginia Tech20, University of Nevada, Las Vegas21, Baylor College of Medicine22, Boston College23, Harvard University24, University of Manchester25, University of California, San Francisco26, University of Cyprus27, National Health Laboratory Service28, University of Crete29, Kenya Medical Research Institute30, University of Arizona31, University of Pennsylvania32, Indian Council of Medical Research33, New Mexico State University34, Liverpool School of Tropical Medicine35, Vanderbilt University Medical Center36, Vanderbilt University37, University of Geneva38, Swiss Institute of Bioinformatics39, Texas A&M University40, Chiang Mai University41, Rio de Janeiro State University42, Oswaldo Cruz Foundation43, Indiana University44, University of Santiago de Compostela45, Wellcome Trust Sanger Institute46, Liverpool John Moores University47, University of Georgia48, Harvey Mudd College49, University of California, Irvine50, University of Groningen51, Centers for Disease Control and Prevention52, Biogen Idec53
02 Jan 2015-Science
TL;DR: The authors investigated the genomic basis of vectorial capacity and explore new avenues for vector control, sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila.
Abstract: Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts

476 citations

Journal ArticleDOI
04 Oct 2002-Science
TL;DR: Regulatory peptides from 35 genes annotated from the Anopheles gambiae genome likely coordinate growth and reproduction of its vector, A. gambiae, as in Drosophila melanogaster, Caenorhabditis elegans, and mammals.
Abstract: The African malaria mosquito, Anopheles gambiae, is specialized for rapid completion of development and reproduction. A vertebrate blood meal is required for egg production, and multiple feedings subsequently allow transmission of malaria parasites, Plasmodium spp. Regulatory peptides from 35 genes annotated from the A. gambiae genome likely coordinate these and other physiological processes. Plasmodium parasites may affect actions of newly identified insulin-like peptides, which coordinate growth and reproduction of its vector, A. gambiae, as in Drosophila melanogaster, Caenorhabditis elegans, and mammals. This genomic information provides a basis to expand understanding of hematophagy and pathogen transmission in this mosquito.

277 citations

Journal ArticleDOI
Junichi Watanabe1, Masahira Hattori1, Matthew Berriman2, Michael J. Lehane3, Neil Hall4, Neil Hall5, Philippe Solano6, Serap Aksoy7, Winston Hide8, Winston Hide9, Yeya T. Touré10, Geoffrey M. Attardo7, Alistair C. Darby5, Atsushi Toyoda11, Christiane Hertz-Fowler2, Denis M. Larkin12, James Cotton2, Mandy Sanders2, Martin T. Swain12, Michael A. Quail2, Noboru Inoue13, Sophie Ravel6, Todd D. Taylor, Tulika P. Srivastava14, Vineet K. Sharma15, Wesley C. Warren16, Richard K. Wilson16, Yutaka Suzuki1, Daniel Lawson, Daniel S.T. Hughes, Karyn Megy, Daniel K. Masiga17, Paul O. Mireji18, Immo A. Hansen19, Jan Van Den Abbeele20, Joshua B. Benoit21, Joshua B. Benoit7, Kostas Bourtzis22, Kostas Bourtzis23, Kostas Bourtzis24, George F. Obiero8, George F. Obiero17, Hugh M. Robertson25, Jeffery W. Jones26, Jing-Jiang Zhou27, Linda M. Field27, Markus Friedrich26, Steven G. Nyanjom28, Erich Loza Telleria7, Guy Caljon20, José M. C. Ribeiro29, Alvaro Acosta-Serrano3, Cher-Pheng Ooi3, Clair Rose3, David P. Price19, Lee R. Haines3, Alan Christoffels8, Cheolho Sim30, Daphne Q.-D. Pham31, David L. Denlinger32, Dawn L. Geiser33, Irene Omedo34, Joy J. Winzerling33, Justin T. Peyton32, Kevin K. Marucha18, Mario Jonas8, Megan E. Meuti32, Neil D. Rawlings, Qirui Zhang32, Rosaline W. Macharia35, Rosaline W. Macharia8, Veronika Michalkova36, Veronika Michalkova7, Zahra Jalali Sefid Dashti8, Aaron A. Baumann37, Gerd Gäde38, Heather G. Marco38, Jelle Caers39, Liliane Schoofs39, Michael A. Riehle33, Wanqi Hu40, Zhijian Tu40, Aaron M. Tarone41, Anna R. Malacrida42, Caleb K. Kibet17, Francesca Scolari42, J.J.O. Koekemoer43, Judith H. Willis44, Ludvik M. Gomulski42, Marco Falchetto42, Maxwell J. Scott45, Shuhua Fu41, Sing-Hoi Sze41, Thiago Luiz7, Brian L. Weiss7, Deirdre Walshe3, Jingwen Wang7, Mark Wamalwa46, Mark Wamalwa8, Sarah Mwangi8, Urvashi N. Ramphul3, Anna K. Snyder47, Corey L. Brelsfoard48, Gavin H. Thomas49, George Tsiamis23, Peter Arensburger50, Rita V. M. Rio47, Sandy J. Macdonald49, Sumir Panji38, Sumir Panji8, Adele Kruger8, Alia Benkahla51, Apollo Simon Peter Balyeidhusa52, Atway R. Msangi, Chinyere K. Okoro2, Dawn Stephens, Eleanor J Stanley, Feziwe Mpondo8, Florence N. Wamwiri, Furaha Mramba, Geoffrey H. Siwo53, George Githinji34, Gordon William Harkins8, Grace Murilla, Heikki Lehväslaiho54, Imna I. Malele, Joanna E. Auma, Johnson Kinyua28, Johnson O. Ouma, Loyce M. Okedi, Lucien Manga, Martin Aslett2, Mathurin Koffi6, Michael W. Gaunt55, Mmule Makgamathe, Nicola Mulder38, Oliver Manangwa, Patrick P. Abila, Patrick Wincker56, Richard Gregory5, Rosemary Bateta18, Ryuichi Sakate57, Sheila C. Ommeh28, Stella Lehane3, Tadashi Imanishi57, Victor Chukwudi Osamor58, Yoshihiro Kawahara59, Yoshihiro Kawahara57 
University of Tokyo1, Wellcome Trust Sanger Institute2, Liverpool School of Tropical Medicine3, King Abdulaziz University4, University of Liverpool5, Institut de recherche pour le développement6, Yale University7, University of the Western Cape8, Harvard University9, World Health Organization10, National Institute of Genetics11, Aberystwyth University12, Obihiro University of Agriculture and Veterinary Medicine13, Indian Institute of Technology Mandi14, Indian Institute of Science Education and Research, Bhopal15, Washington University in St. Louis16, International Centre of Insect Physiology and Ecology17, Egerton University18, New Mexico State University19, Institute of Tropical Medicine Antwerp20, University of Cincinnati21, Alexander Fleming Biomedical Sciences Research Center22, University of Patras23, International Atomic Energy Agency24, University of Illinois at Urbana–Champaign25, Wayne State University26, Rothamsted Research27, Jomo Kenyatta University of Agriculture and Technology28, National Institutes of Health29, Baylor University30, University of Wisconsin–Parkside31, Ohio State University32, University of Arizona33, Wellcome Trust34, University of Nairobi35, Slovak Academy of Sciences36, Howard Hughes Medical Institute37, University of Cape Town38, Katholieke Universiteit Leuven39, Virginia Tech40, Texas A&M University41, University of Pavia42, University of Pretoria43, University of Georgia44, North Carolina State University45, Kenyatta University46, West Virginia University47, St. Catharine College48, University of York49, California State Polytechnic University, Pomona50, Pasteur Institute51, Makerere University52, University of Notre Dame53, King Abdullah University of Science and Technology54, University of London55, French Alternative Energies and Atomic Energy Commission56, National Institute of Advanced Industrial Science and Technology57, Covenant University58, University of Tsukuba59
25 Apr 2014-Science
TL;DR: The sequence and annotation of the 366-megabase Glossina mors Titans morsitans genome are described, providing a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.
Abstract: Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein–encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.

242 citations

Journal ArticleDOI
TL;DR: It is demonstrated that increased Akt signaling in the mosquito midgut disrupts parasite development and concurrently reduces the duration that mosquitoes are infective to humans.
Abstract: Malaria (Plasmodium spp.) kills nearly one million people annually and this number will likely increase as drug and insecticide resistance reduces the effectiveness of current control strategies. The most important human malaria parasite, Plasmodium falciparum, undergoes a complex developmental cycle in the mosquito that takes approximately two weeks and begins with the invasion of the mosquito midgut. Here, we demonstrate that increased Akt signaling in the mosquito midgut disrupts parasite development and concurrently reduces the duration that mosquitoes are infective to humans. Specifically, we found that increased Akt signaling in the midgut of heterozygous Anopheles stephensi reduced the number of infected mosquitoes by 60–99%. Of those mosquitoes that were infected, we observed a 75–99% reduction in parasite load. In homozygous mosquitoes with increased Akt signaling parasite infection was completely blocked. The increase in midgut-specific Akt signaling also led to an 18–20% reduction in the average mosquito lifespan. Thus, activation of Akt signaling reduced the number of infected mosquitoes, the number of malaria parasites per infected mosquito, and the duration of mosquito infectivity.

185 citations


Cited by
More filters
Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
TL;DR: A functional classification of cell death subroutines is proposed that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic programmed cell death, regulated necrosis, autophagic cell death and mitotic catastrophe.
Abstract: In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.

2,238 citations

Journal ArticleDOI
26 Oct 2006-Nature
TL;DR: The genome sequence of the honeybee Apis mellifera is reported, suggesting a novel African origin for the species A. melliferA and insights into whether Africanized bees spread throughout the New World via hybridization or displacement.
Abstract: Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more slowly, and is more similar to vertebrates for circadian rhythm, RNA interference and DNA methylation genes, among others. Furthermore, A. mellifera has fewer genes for innate immunity, detoxification enzymes, cuticle-forming proteins and gustatory receptors, more genes for odorant receptors, and novel genes for nectar and pollen utilization, consistent with its ecology and social organization. Compared to Drosophila, genes in early developmental pathways differ in Apis, whereas similarities exist for functions that differ markedly, such as sex determination, brain function and behaviour. Population genetics suggests a novel African origin for the species A. mellifera and insights into whether Africanized bees spread throughout the New World via hybridization or displacement.

1,673 citations

Journal ArticleDOI
TL;DR: A way forward is suggested for the effective targeting of autophagy by understanding the context-dependent roles of autophile and by capitalizing on modern approaches to clinical trial design.
Abstract: Autophagy is a mechanism by which cellular material is delivered to lysosomes for degradation, leading to the basal turnover of cell components and providing energy and macromolecular precursors. Autophagy has opposing, context-dependent roles in cancer, and interventions to both stimulate and inhibit autophagy have been proposed as cancer therapies. This has led to the therapeutic targeting of autophagy in cancer to be sometimes viewed as controversial. In this Review, we suggest a way forwards for the effective targeting of autophagy by understanding the context-dependent roles of autophagy and by capitalizing on modern approaches to clinical trial design.

1,606 citations

Journal Article
01 Jan 2004-Nature
TL;DR: In this article, S6K1-deficient mice are protected against obesity owing to enhanced β-oxidation, but on a high fat diet, levels of glucose and free fatty acids still rise in S6k1-dependent mice, resulting in insulin receptor desensitization.
Abstract: Elucidating the signalling mechanisms by which obesity leads to impaired insulin action is critical in the development of therapeutic strategies for the treatment of diabetes. Recently, mice deficient for S6 Kinase 1 (S6K1), an effector of the mammalian target of rapamycin (mTOR) that acts to integrate nutrient and insulin signals, were shown to be hypoinsulinaemic, glucose intolerant and have reduced β-cell mass. However, S6K1-deficient mice maintain normal glucose levels during fasting, suggesting hypersensitivity to insulin, raising the question of their metabolic fate as a function of age and diet. Here, we report that S6K1-deficient mice are protected against obesity owing to enhanced β-oxidation. However on a high fat diet, levels of glucose and free fatty acids still rise in S6K1-deficient mice, resulting in insulin receptor desensitization. Nevertheless, S6K1-deficient mice remain sensitive to insulin owing to the apparent loss of a negative feedback loop from S6K1 to insulin receptor substrate 1 (IRS1), which blunts S307 and S636/S639 phosphorylation; sites involved in insulin resistance. Moreover, wild-type mice on a high fat diet as well as K/K Ay and ob/ob (also known as Lep/Lep) micetwo genetic models of obesityhave markedly elevated S6K1 activity and, unlike S6K1-deficient mice, increased phosphorylation of IRS1 S307 and S636/S639. Thus under conditions of nutrient satiation S6K1 negatively regulates insulin signalling.

1,408 citations