scispace - formally typeset
Search or ask a question
Author

Michael Anthonius Lim

Bio: Michael Anthonius Lim is an academic researcher from University of Pelita Harapan. The author has contributed to research in topics: Meta-analysis & Medicine. The author has an hindex of 18, co-authored 50 publications receiving 1682 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: DM was associated with mortality, severe COVID-19, ARDS, and disease progression in patients with CO VID-19 and the association was weaker in studies with median age ≥55 years-old compared to <55 years old, and in prevalence of hypertension ≥25% compared to<25%.
Abstract: BACKGROUND AND AIMS: Diabetes Mellitus (DM) is chronic conditions with devastating multi-systemic complication and may be associated with severe form of Coronavirus Disease 2019 (COVID-19). We conducted a systematic review and meta-analysis in order to investigate the association between DM and poor outcome in patients with COVID-19 pneumonia. METHODS: Systematic literature search was performed from several electronic databases on subjects that assess DM and outcome in COVID-19 pneumonia. The outcome of interest was composite poor outcome, including mortality, severe COVID-19, acute respiratory distress syndrome (ARDS), need for intensive care unit (ICU) care, and disease progression. RESULTS: There were a total of 6452 patients from 30 studies. Meta-analysis showed that DM was associated with composite poor outcome (RR 2.38 [1.88, 3.03], p < 0.001; I2: 62%) and its subgroup which comprised of mortality (RR 2.12 [1.44, 3.11], p < 0.001; I2: 72%), severe COVID-19 (RR 2.45 [1.79, 3.35], p < 0.001; I2: 45%), ARDS (RR 4.64 [1.86, 11.58], p = 0.001; I2: 9%), and disease progression (RR 3.31 [1.08, 10.14], p = 0.04; I2: 0%). Meta-regression showed that the association with composite poor outcome was influenced by age (p = 0.003) and hypertension (p < 0.001). Subgroup analysis showed that the association was weaker in studies with median age ≥55 years-old (RR 1.92) compared to <55 years-old (RR 3.48), and in prevalence of hypertension ≥25% (RR 1.93) compared to <25% (RR 3.06). Subgroup analysis on median age <55 years-old and prevalence of hypertension <25% showed strong association (RR 3.33) CONCLUSION: DM was associated with mortality, severe COVID-19, ARDS, and disease progression in patients with COVID-19.

656 citations

Journal ArticleDOI
TL;DR: This meta-analysis showed that an elevated serum CRP, PCT, D-dimer, and ferritin were associated with a poor outcome in COVID-19, a critically ill patients critically ill with coronavirus disease-2019.
Abstract: Background:Patients critically ill with coronavirus disease-2019 (COVID-19) feature hyperinflammation, and the associated biomarkers may be beneficial for risk stratification. We aimed to investiga...

371 citations

Journal ArticleDOI
TL;DR: Hypertension was associated with increased composite poor outcome, including mortality, severe COVID-19, acute respiratory distress syndrome (ARDS), need for intensive care unit (ICU) care and disease progression in patients with CO VID-19.
Abstract: Objective:To investigate the association between hypertension and outcome in patients with Coronavirus Disease 2019 (COVID-19) pneumonia.Methods:We performed a systematic literature search from sev...

261 citations

Journal ArticleDOI
TL;DR: Cerebrovascular and cardiovascular diseases were associated with increased risk for poor outcome in COVID-19 and meta-regression demonstrated that the association was not influenced by gender, age, hypertension, diabetes, and respiratory comorbidities.
Abstract: Background We conducted a systematic review and meta-analysis to evaluate the latest evidence on the association between cerebrovascular, and cardiovascular diseases and poor outcome in patients with Coronavirus Disease 2019 (COVID-19) pneumonia. Methods A comprehensive systematic literature search was performed using PubMed, SCOPUS, EuropePMC, and Cochrane Central Database. The outcome of interest was composite poor outcome that comprised of mortality and severe COVID-19. Results A total of 4448 patients were obtained from 16 studies. Cerebrovascular disease was associated with an increased composite poor outcome (RR 2.04 [1.43,2.91], p Conclusion Cerebrovascular and cardiovascular diseases were associated with an increased risk for poor outcome in patients with COVID-19.

260 citations

Journal ArticleDOI
TL;DR: CCI score should be utilized for risk stratifications of hospitalized COVID-19 patients and is prognostically associated with mortality and associated with a composite of poor outcomes.
Abstract: Background and aims The ongoing COVID-19 pandemic is disproportionately affecting patients with comorbidities. Therefore, thorough comorbidities assessment can help establish risk stratification of patients with COVID-19, upon hospital admission. Charlson Comorbidity Index (CCI) is a validated, simple, and readily applicable method of estimating the risk of death from comorbid disease and has been widely used as a predictor of long-term prognosis and survival. Methods We performed a systematic review and meta-analysis of CCI score and a composite of poor outcomes through several databases. Results Compared to a CCI score of 0, a CCI score of 1–2 and CCI score of ≥3 was prognostically associated with mortality and associated with a composite of poor outcomes. Per point increase of CCI score also increased mortality risk by 16%. Moreover, a higher mean CCI score also significantly associated with mortality and disease severity. Conclusion CCI score should be utilized for risk stratifications of hospitalized COVID-19 patients.

160 citations


Cited by
More filters
01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal Article
TL;DR: Coppe et al. as mentioned in this paper showed that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy, including interleukin (IL)-6 and IL-8.
Abstract: PLoS BIOLOGY Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor Jean-Philippe Coppe 1 , Christopher K. Patil 1[ , Francis Rodier 1,2[ , Yu Sun 3 , Denise P. Mun oz 1,2 , Joshua Goldstein 1¤ , Peter S. Nelson 3 , Pierre-Yves Desprez 1,4 , Judith Campisi 1,2* 1 Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America, 2 Buck Institute for Age Research, Novato, California, United States of America, 3 Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America, 4 California Pacific Medical Center Research Institute, San Francisco, California, United States of America Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA- damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial–mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment. Citation: Coppe JP, Patil CK, Rodier F, Sun Y, Mun oz DP, et al. (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12): e301. doi:10.1371/journal.pbio.0060301 Introduction Cancer is a multistep disease in which cells acquire increasingly malignant phenotypes. These phenotypes are acquired in part by somatic mutations, which derange normal controls over cell proliferation (growth), survival, invasion, and other processes important for malignant tumorigenesis [1]. In addition, there is increasing evidence that the tissue microenvironment is an important determinant of whether and how malignancies develop [2,3]. Normal tissue environ- ments tend to suppress malignant phenotypes, whereas abnormal tissue environments such at those caused by inflammation can promote cancer progression. Cancer development is restrained by a variety of tumor suppressor genes. Some of these genes permanently arrest the growth of cells at risk for neoplastic transformation, a process termed cellular senescence [4–6]. Two tumor suppressor pathways, controlled by the p53 and p16INK4a/pRB proteins, regulate senescence responses. Both pathways integrate multiple aspects of cellular physiology and direct cell fate towards survival, death, proliferation, or growth arrest, depending on the context [7,8]. Several lines of evidence indicate that cellular senescence is a potent tumor-suppressive mechanism [4,9,10]. Many poten- tially oncogenic stimuli (e.g., dysfunctional telomeres, DNA PLoS Biology | www.plosbiology.org damage, and certain oncogenes) induce senescence [6,11]. Moreover, mutations that dampen the p53 or p16INK4a/pRB pathways confer resistance to senescence and greatly increase cancer risk [12,13]. Most cancers harbor mutations in one or both of these pathways [14,15]. Lastly, in mice and humans, a senescence response to strong mitogenic signals, such as those delivered by certain oncogenes, prevents premalignant lesions from progressing to malignant cancers [16–19]. Academic Editor: Julian Downward, Cancer Research UK, United Kingdom Received June 27, 2008; Accepted October 22, 2008; Published December 2, 2008 Copyright: O 2008 Coppe et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abbreviations: CM, conditioned medium; DDR, DNA damage response; ELISA, enzyme-linked immunosorbent assay; EMT, epithelial–mesenchymal transition; GSE, genetic suppressor element; IL, interleukin; MIT, mitoxantrone; PRE, presenescent; PrEC, normal human prostate epithelial cell; REP, replicative exhaustion; SASP, senescence-associated secretory phenotype; SEN, senescent; shRNA, short hairpin RNA; XRA, X-irradiation * To whom correspondence should be addressed. E-mail: jcampisi@lbl.gov [ These authors contributed equally to this work. ¤ Current address: Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America December 2008 | Volume 6 | Issue 12 | e301

2,150 citations

Journal ArticleDOI
02 Jul 2020
TL;DR: The findings suggest that older patients with risk factors are more likely to develop CVD and the development of CVD is an important negative prognostic factor which requires further study to identify optimal management strategy to combat the COVID-19 outbreak.
Abstract: Background and purpose COVID-19 is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Apart from respiratory complications, acute cerebrovascular disease (CVD) has been observed in some patients with COVID-19. Therefore, we described the clinical characteristics, laboratory features, treatment and outcomes of CVD complicating SARS-CoV-2 infection. Materials and methods Demographic and clinical characteristics, laboratory findings, treatments and clinical outcomes were collected and analysed. Clinical characteristics and laboratory findings of patients with COVID-19 with or without new-onset CVD were compared. Results Of 219 patients with COVID-19, 10 (4.6%) developed acute ischaemic stroke and 1 (0.5%) had intracerebral haemorrhage. COVID-19 with new onset of CVD were significantly older (75.7±10.8 years vs 52.1±15.3 years, p Conclusion Acute CVD is not uncommon in COVID-19. Our findings suggest that older patients with risk factors are more likely to develop CVD. The development of CVD is an important negative prognostic factor which requires further study to identify optimal management strategy to combat the COVID-19 outbreak.

711 citations

Journal ArticleDOI
01 Feb 2021-Allergy
TL;DR: In this review, the scientific evidence on the risk factors of severity of COVID‐19 are highlighted and socioeconomic status, diet, lifestyle, geographical differences, ethnicity, exposed viral load, day of initiation of treatment, and quality of health care have been reported to influence individual outcomes.
Abstract: The pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused an unprecedented global social and economic impact, and high numbers of deaths. Many risk factors have been identified in the progression of COVID-19 into a severe and critical stage, including old age, male gender, underlying comorbidities such as hypertension, diabetes, obesity, chronic lung diseases, heart, liver and kidney diseases, tumors, clinically apparent immunodeficiencies, local immunodeficiencies, such as early type I interferon secretion capacity, and pregnancy. Possible complications include acute kidney injury, coagulation disorders, thoromboembolism. The development of lymphopenia and eosinopenia are laboratory indicators of COVID-19. Laboratory parameters to monitor disease progression include lactate dehydrogenase, procalcitonin, high-sensitivity C-reactive protein, proinflammatory cytokines such as interleukin (IL)-6, IL-1β, Krebs von den Lungen-6 (KL-6), and ferritin. The development of a cytokine storm and extensive chest computed tomography imaging patterns are indicators of a severe disease. In addition, socioeconomic status, diet, lifestyle, geographical differences, ethnicity, exposed viral load, day of initiation of treatment, and quality of health care have been reported to influence individual outcomes. In this review, we highlight the scientific evidence on the risk factors of severity of COVID-19.

703 citations

Journal ArticleDOI
TL;DR: The results of this nationwide analysis in England show that type 1 and type 2 diabetes were both independently associated with a significant death with COVID-19, and the effects were attenuated to ORs of 2·86 (2·58–3·18) for type 1 diabetes and 1·80 (1·75–1·86) fortype 2 diabetes when also adjusted for previous hospital admissions with coronary heart disease, cerebrovascular disease, or heart failure.

662 citations