scispace - formally typeset
Search or ask a question
Author

Michaël Aubert

Bio: Michaël Aubert is an academic researcher from University of Rouen. The author has contributed to research in topics: Beech & Humus. The author has an hindex of 28, co-authored 62 publications receiving 2912 citations. Previous affiliations of Michaël Aubert include Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a comprehensive analysis of invertebrate activities shows that they may be the best possible indicators of soil quality, and they should also be considered as a resource that needs to be properly managed to enhance ecosystem services provided by agro-ecosystems.

1,080 citations

Journal ArticleDOI
TL;DR: The results suggest long-term negative effects of selective cutting on both structural and functional plant diversity, compared with coppice-with-standards, which does not cope with the objective of sustainable forest management.
Abstract: Summary 1 Disturbances and resource availability are key factors affecting plant diversity in managed forests. As disturbance regimes vary among silvicultural systems and may simultaneously affect different types of resources, effects on biodiversity can be unpredictable. 2 We compared the effects of two silvicultural systems on understorey plant diversity, including species composition, structural attributes and functional organization. One hundred and thirty-five phytosociological releves were sampled from 27 forest stands managed under either a traditional coppice-with-standards (CWS, n = 12) or a ‘close-to-nature’ selective cutting system (SC, n = 15), over similar edaphic conditions. Important environmental factors affecting vegetation were deduced using Ellenberg indicator values. Structural diversity was described using traditional indices of α and β diversity. Guilds were defined within the local pool of species using a set of 14 traits and their relationship with silviculture was assessed using correspondence analysis. 3 Post-logged CWS stands share some compositional and structural characteristics with selectively cut stands, including high species richness and a dominance of early successional species. However the species pool for all coppicing areas was higher than for selectively cut areas, suggesting that the high disturbance frequency occurring in the latter may progressively eliminate the most sensitive species. 4 Functional diversity strongly differs between the two systems. Although it is conserved through the silvicultural cycle in the coppice-with-standards system, some guilds were lacking in selectively cut stands. The most negatively impacted guilds were tree and shrub saplings, prostrated ruderals, shade-tolerant perennials and vernal geophytes. The latter two comprise ‘true forest species’ which may also be considered as ‘coppicing-maintained species’. To reach the same values of guild richness (i.e. number of guilds) or redundancy (i.e. proportion of the maximal species richness within each guild), larger areas were required in SC compared with CWS systems. 5 In the SC system, the high proportion of light reaching the forest floor induced a spectacular spread of blackberries Rubus fruticosus agg., which decreased species richness. It also caused shifts in guild composition: graminoids and ferns grew strongly to the detriment of true forest species. 6 Synthesis and applications. Our results suggest long-term negative effects of selective cutting on both structural and functional plant diversity, compared with coppice-with-standards. Cutting intervals are shorter than recovery times, so that early successional species-dominated communities are maintained. Vernal geophytes and shade-tolerant perennials seem to be limited by the frequency of disturbance rather than by the severity of disturbance. We conclude that, from a biodiversity point of view, this ‘close-to-nature’ system does not cope with the objective of sustainable forest management. The rotations currently in use do not match natural disturbances very closely and are applied to a managed system rather than a natural forest. Retaining remnants of old coppice woods and extending rotations to at least 50 years are recommended where biodiversity conservation is a goal of forest management.

282 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the behavior of the TerraSAR-X signal for two configurations, HH-25° and HH-50°, with regard to several soil conditions: moisture content, surface roughness, soil composition and soil-surface structure (slaking crust).

134 citations

Journal ArticleDOI
TL;DR: It is concluded that earthworm communities are also highly structured by competition, agreeing with the idea that both habitat and competitive constraints operate simultaneously to determine how community assembly takes place.

113 citations

Journal ArticleDOI
TL;DR: The results highlighted a strong inertia between different soil decomposer groups for the attack of the most recalcitrant biochemical fraction only in late stage, independently of the litter origin.
Abstract: Home-Field Advantage (HFA) defines the way with which a plant litter may decompose faster in the habitat from which it derives (i.e. home) than beneath a different plant community (i.e. away from home). Recent studies, using plurispecific litter and involving several soil biota groups, failed to demonstrate a clear positive HFA effect. The interactions between different soil biota groups and different litter types may cause additive effect on decomposition process. Concomitantly, new hypothesis was raised which expects a continuum from positive to negative interactions between transplanted litter and host litter as both litters become increasingly dissimilar in quality, which has been called Substrate quality–Matrix quality Interaction (SMI). Against this background, we aimed at testing the influence of both litter quality and soil organisms in determining the HFA and the SMI hypothesis. We used reciprocal plurispecific transplanting litter along a gradient of litter quality with three successional stages: early (S1), medium (S2) and late successional stage (S3), coupled with litterbags of different mesh size to select different decomposers communities. Furthermore, we analyzed litter quality in order to test the SMI hypothesis. Overall, we did not observe a general HFA or SMI effect. In micromesh litterbags, only S1 litter showed an HFA effect (+7%) while in mesomesh litterbags, only S2 litter presented an HFA effect (+8%). The contribution of each litter quality fraction to the HFA index allowed us to show that only highly labile fractions (i.e., solubles and hemicellulose) presented a positive HFA index, independently of the mesh size. Indeed, our findings corroborated the SMI hypothesis but for labile fraction only. Finally, our results highlighted a strong inertia between different soil decomposer groups for the attack of the most recalcitrant biochemical fraction (i.e. lignin) only in late stage, independently of the litter origin.

78 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is found that explicit evaluation of soil quality with respect to specific soil threats, soil functions and ecosystem services has rarely been implemented, and few approaches providing clear interpretation schemes of measured indicator values limits their adoption by land managers as well as policy.
Abstract: Sampling and analysis or visual examination of soil to assess its status and use potential is widely practiced from plot to national scales. However, the choice of relevant soil attributes and interpretation of measurements are not straightforward, because of the complexity and site-specificity of soils, legacy effects of previous land use, and trade-offs between ecosystem services. Here we review soil quality and related concepts, in terms of definition, assessment approaches, and indicator selection and interpretation. We identify the most frequently used soil quality indicators under agricultural land use. We find that explicit evaluation of soil quality with respect to specific soil threats, soil functions and ecosystem services has rarely been implemented, and few approaches provide clear interpretation schemes of measured indicator values. This limits their adoption by land managers as well as policy. We also consider novel indicators that address currently neglected though important soil properties and processes, and we list the crucial steps in the development of a soil quality assessment procedure that is scientifically sound and supports management and policy decisions that account for the multi-functionality of soil. This requires the involvement of the pertinent actors, stakeholders and end-users to a much larger degree than practiced to date.

1,257 citations

Book ChapterDOI
01 Mar 2010
TL;DR: In this article, the authors argue that no matter who we are, or where we live, our well-being depends on the way ecosystems work, and that ecosystems can provide us with material things that are essential for our daily lives, such as food, wood, wool and medicines.
Abstract: No matter who we are, or where we live, our well-being depends on the way ecosystems work. Most obviously, ecosystems can provide us with material things that are essential for our daily lives, such as food, wood, wool and medicines. Although the other types of benefit we get from ecosystems are easily overlooked, they can, for example, also play an important role in regulating the environments in which we live. They can help ensure the flow of clean water and protect us from flooding or other hazards like soil erosion, land-slips and tsunamis. They can even contribute to our spiritual well-being, through their cultural or religious significance or the opportunities they provide for recreation or the enjoyment of nature.

1,066 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of the function of plantation forests as habitat compared with other land cover, examine the effects on biodiversity at the landscape scale, and synthesise context-specific effects of plantation forestry on biodiversity.
Abstract: Losses of natural and semi-natural forests, mostly to agriculture, are a significant concern for biodiversity. Against this trend, the area of intensively managed plantation forests increases, and there is much debate about the implications for biodiversity. We provide a comprehensive review of the function of plantation forests as habitat compared with other land cover, examine the effects on biodiversity at the landscape scale, and synthesise context-specific effects of plantation forestry on biodiversity. Natural forests are usually more suitable as habitat for a wider range of native forest species than plantation forests but there is abundant evidence that plantation forests can provide valuable habitat, even for some threatened and endangered species, and may contribute to the conservation of biodiversity by various mechanisms. In landscapes where forest is the natural land cover, plantation forests may represent a low-contrast matrix, and afforestation of agricultural land can assist conservation by providing complementary forest habitat, buffering edge effects, and increasing connectivity. In contrast, conversion of natural forests and afforestation of natural non-forest land is detrimental. However, regional deforestation pressure for agricultural development may render plantation forestry a ‘lesser evil’ if forest managers protect indigenous vegetation remnants. We provide numerous context-specific examples and case studies to assist impact assessments of plantation forestry, and we offer a range of management recommendations. This paper also serves as an introduction and background paper to this special issue on the effects of plantation forests on biodiversity.

962 citations

Journal ArticleDOI
TL;DR: The contribution of earthworms to ecosystem services through pedogenesis, development of soil structure, water regulation, nutrient cycling, primary production, climate regulation, pollution remediation and cultural services is discussed in this article.
Abstract: Summary Biodiversity is responsible for the provision of many ecosystem services; human well-being is based on these services, and consequently on biodiversity. In soil, earthworms represent the largest component of the animal biomass and are commonly termed ‘ecosystem engineers’. This review considers the contribution of earthworms to ecosystem services through pedogenesis, development of soil structure, water regulation, nutrient cycling, primary production, climate regulation, pollution remediation and cultural services. Although there has been much research into the role of earthworms in soil ecology, this review demonstrates substantial gaps in our knowledge related in particular to difficulties in identifying the effects of species, land use and climate. The review aims to assist people involved in all aspects of land management, including conservation, agriculture, mining or other industries, to obtain a broad knowledge of earthworms and ecosystem services.

818 citations

Book
01 Jan 2009
TL;DR: In this article, a comprehensive review of the function of plantation forests as habitat compared with other land cover, examine the effects on biodiversity at the landscape scale, and synthesise context-specific effects of plantation forestry on biodiversity.
Abstract: Losses of natural and semi-natural forests, mostly to agriculture, are a significant concern for biodiversity. Against this trend, the area of intensively managed plantation forests increases, and there is much debate about the implications for biodiversity. We provide a comprehensive review of the function of plantation forests as habitat compared with other land cover, examine the effects on biodiversity at the landscape scale, and synthesise context-specific effects of plantation forestry on biodiversity. Natural forests are usually more suitable as habitat for a wider range of native forest species than plantation forests but there is abundant evidence that plantation forests can provide valuable habitat, even for some threatened and endangered species, and may contribute to the conservation of biodiversity by various mechanisms. In landscapes where forest is the natural land cover, plantation forests may represent a low-contrast matrix, and afforestation of agricultural land can assist conservation by providing complementary forest habitat, buffering edge effects, and increasing connectivity. In contrast, conversion of natural forests and afforestation of natural non-forest land is detrimental. However, regional deforestation pressure for agricultural development may render plantation forestry a ‘lesser evil’ if forest managers protect indigenous vegetation remnants. We provide numerous context-specific examples and case studies to assist impact assessments of plantation forestry, and we offer a range of management recommendations. This paper also serves as an introduction and background paper to this special issue on the effects of plantation forests on biodiversity.

783 citations