scispace - formally typeset
Search or ask a question
Author

Michael Ayliffe

Bio: Michael Ayliffe is an academic researcher from Commonwealth Scientific and Industrial Research Organisation. The author has contributed to research in topics: Gene & Plant disease resistance. The author has an hindex of 35, co-authored 71 publications receiving 7076 citations. Previous affiliations of Michael Ayliffe include United Nations & Cooperative Research Centre.


Papers
More filters
Journal ArticleDOI
TL;DR: Genome sequences reveal that a deluge of DNA from organelle DNA has constantly been bombarding the nucleus since the origin of organelles, abolished organelle autonomy and increased nuclear complexity.
Abstract: Genome sequences reveal that a deluge of DNA from organelles has constantly been bombarding the nucleus since the origin of organelles. Recent experiments have shown that DNA is transferred from organelles to the nucleus at frequencies that were previously unimaginable. Endosymbiotic gene transfer is a ubiquitous, continuing and natural process that pervades nuclear DNA dynamics. This relentless influx of organelle DNA has abolished organelle autonomy and increased nuclear complexity.

1,324 citations

Journal ArticleDOI
TL;DR: It is shown that the flax rust fungus AvrL567 genes, whose products are recognized by the L5, L6, and L7 R proteins of flax, are highly diverse, with 12 sequence variants identified from six rust strains and suggested to represent an alternative outcome of plant-pathogen coevolution to indirect recognition associated with simple balanced polymorphisms for functional and nonfunctional R and Avr genes.
Abstract: Plant resistance proteins (R proteins) recognize corresponding pathogen avirulence (Avr) proteins either indirectly through detection of changes in their host protein targets or through direct R-Avr protein interaction. Although indirect recognition imposes selection against Avr effector function, pathogen effector molecules recognized through direct interaction may overcome resistance through sequence diversification rather than loss of function. Here we show that the flax rust fungus AvrL567 genes, whose products are recognized by the L5, L6, and L7 R proteins of flax, are highly diverse, with 12 sequence variants identified from six rust strains. Seven AvrL567 variants derived from Avr alleles induce necrotic responses when expressed in flax plants containing corresponding resistance genes (R genes), whereas five variants from avr alleles do not. Differences in recognition specificity between AvrL567 variants and evidence for diversifying selection acting on these genes suggest they have been involved in a gene-specific arms race with the corresponding flax R genes. Yeast two-hybrid assays indicate that recognition is based on direct R-Avr protein interaction and recapitulate the interaction specificity observed in planta. Biochemical analysis of Escherichia coli-produced AvrL567 proteins shows that variants that escape recognition nevertheless maintain a conserved structure and stability, suggesting that the amino acid sequence differences directly affect the R-Avr protein interaction. We suggest that direct recognition associated with high genetic diversity at corresponding R and Avr gene loci represents an alternative outcome of plant-pathogen coevolution to indirect recognition associated with simple balanced polymorphisms for functional and nonfunctional R and Avr genes.

756 citations

Journal ArticleDOI
TL;DR: The L6 rust resistance gene from flax was cloned after tagging with the maize transposable element Activator and the truncated product of L6, which lacks most of the leucine-rich C-terminal region, is similar to the truncation product that is predicted from an alternative transcript of the N gene.
Abstract: The L6 rust resistance gene from flax was cloned after tagging with the maize transposable element Activator. The gene is predicted to encode two products of 1294 and 705 amino acids that result from alternatively spliced transcripts. The longer product is similar to the products of two other plant disease resistance genes, the tobacco mosaic virus resistance gene N of tobacco and the bacterial resistance gene RPS2 of Arabidopsis. The similarity involves the presence of a nucleotide (ATP/GTP) binding site and several other amino acid motifs of unknown function in the N-terminal half of the polypeptides and a leucine-rich region in the C-terminal half. The truncated product of L6, which lacks most of the leucine-rich C-terminal region, is similar to the truncated product that is predicted from an alternative transcript of the N gene. The L6, N, and RPS2 genes, which control resistance to three widely different pathogen types, are the foundation of a class of plant disease resistance genes that can be referred to as nucleotide binding site/leucine-rich repeat resistance genes.

497 citations

Journal ArticleDOI
TL;DR: The wheat Lr67 gene is isolated, which confers partial resistance to all three wheat rust pathogen species and powdery mildew, and exerts a dominant-negative effect through heterodimerization with these functional transporters to reduce glucose uptake.
Abstract: As there are numerous pathogen species that cause disease and limit yields of crops, such as wheat (Triticum aestivum), single genes that provide resistance to multiple pathogens are valuable in crop improvement. The mechanistic basis of multi-pathogen resistance is largely unknown. Here we use comparative genomics, mutagenesis and transformation to isolate the wheat Lr67 gene, which confers partial resistance to all three wheat rust pathogen species and powdery mildew. The Lr67 resistance gene encodes a predicted hexose transporter (LR67res) that differs from the susceptible form of the same protein (LR67sus) by two amino acids that are conserved in orthologous hexose transporters. Sugar uptake assays show that LR67sus, and related proteins encoded by homeoalleles, function as high-affinity glucose transporters. LR67res exerts a dominant-negative effect through heterodimerization with these functional transporters to reduce glucose uptake. Alterations in hexose transport in infected leaves may explain its ability to reduce the growth of multiple biotrophic pathogen species.

461 citations

Journal ArticleDOI
TL;DR: In this article, the authors identified genes encoding haustorially expressed secreted proteins (HESPs) by screening a flax rust-specific cDNA library and identifying 21 HESPs, one corresponding to the AvrL567 gene.
Abstract: Rust fungi, obligate biotrophs that cause disease and yield losses in crops such as cereals and soybean (Glycine max), obtain nutrients from the host through haustoria, which are specialized structures that develop within host cells. Resistance of flax (Linum usitatissimum) to flax rust (Melampsora lini) involves the induction of a hypersensitive cell death response at haustoria formation sites, governed by gene-for-gene recognition between host resistance and pathogen avirulence genes. We identified genes encoding haustorially expressed secreted proteins (HESPs) by screening a flax rust haustorium-specific cDNA library. Among 429 unigenes, 21 HESPs were identified, one corresponding to the AvrL567 gene. Three other HESPs cosegregated with the independent AvrM, AvrP4, and AvrP123 loci. Expression of these genes in flax induced resistance gene–mediated cell death with the appropriate specificity, confirming their avirulence activity. AvrP4 and AvrP123 are Cys-rich proteins, and AvrP123 contains a Kazal Ser protease inhibitor signature, whereas AvrM contains no Cys residues. AvrP4 and AvrM induce cell death when expressed intracellularly, suggesting their translocation into plant cells during infection. However, secreted AvrM and AvrP4 also induce necrotic responses, with secreted AvrP4 more active than intracellular AvrP4, possibly as a result of enhanced formation of endoplasmic reticulum–dependent disulfide bonds. Addition of an endoplasmic reticulum retention signal inhibited AvrM-induced necrosis, suggesting that both AvrM and AvrP4 can reenter the plant cell after secretion in the absence of the pathogen.

444 citations


Cited by
More filters
Journal ArticleDOI
16 Nov 2006-Nature
TL;DR: A detailed understanding of plant immune function will underpin crop improvement for food, fibre and biofuels production and provide extraordinary insights into molecular recognition, cell biology and evolution across biological kingdoms.
Abstract: Many plant-associated microbes are pathogens that impair plant growth and reproduction. Plants respond to infection using a two-branched innate immune system. The first branch recognizes and responds to molecules common to many classes of microbes, including non-pathogens. The second responds to pathogen virulence factors, either directly or through their effects on host targets. These plant immune systems, and the pathogen molecules to which they respond, provide extraordinary insights into molecular recognition, cell biology and evolution across biological kingdoms. A detailed understanding of plant immune function will underpin crop improvement for food, fibre and biofuels production.

10,539 citations

Journal ArticleDOI
TL;DR: The compartmentalization of proline biosynthesis, accumulation and degradation in the cytosol, chloroplast and mitochondria is discussed and the role of prolines in cellular homeostasis, including redox balance and energy status, is described.

3,102 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: In this review, taking an evolutionary perspective, important discoveries over the last decade about the plant immune response are highlighted.

2,668 citations

Journal ArticleDOI
TL;DR: The recent convergence of molecular studies of plant immunity and pathogen infection strategies is revealing an integrated picture of the plant–pathogen interaction from the perspective of both organisms, suggesting novel biotechnological approaches to crop protection.
Abstract: Plants are engaged in a continuous co-evolutionary struggle for dominance with their pathogens. The outcomes of these interactions are of particular importance to human activities, as they can have dramatic effects on agricultural systems. The recent convergence of molecular studies of plant immunity and pathogen infection strategies is revealing an integrated picture of the plant-pathogen interaction from the perspective of both organisms. Plants have an amazing capacity to recognize pathogens through strategies involving both conserved and variable pathogen elicitors, and pathogens manipulate the defence response through secretion of virulence effector molecules. These insights suggest novel biotechnological approaches to crop protection.

2,666 citations

Journal ArticleDOI
TL;DR: Proline (Pro) accumulation is a common physiological response in many plants in response to a wide range of biotic and abiotic stresses as discussed by the authors, and controversy has surrounded the possible role(s) of proline accumulation.
Abstract: Proline (Pro) accumulation is a common physiological response in many plants in response to a wide range of biotic and abiotic stresses. Controversy has surrounded the possible role(s) of proline accumulation. In this review, knowledge on the regulation of Pro metabolism during development and stress, results of genetic manipulation of Pro metabolism and current debate on Pro toxicity in plants are presented.

1,551 citations