scispace - formally typeset
Search or ask a question
Author

Michael B. Petersen

Other affiliations: Odense University
Bio: Michael B. Petersen is an academic researcher from University of Southern Denmark. The author has contributed to research in topics: Locked nucleic acid & Trisomy. The author has an hindex of 32, co-authored 136 publications receiving 4057 citations. Previous affiliations of Michael B. Petersen include Odense University.


Papers
More filters
Journal ArticleDOI
13 Sep 2012-Nature
TL;DR: HDRAC8 is identified as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands, which results in increased SMC 3 acetylation and inefficient dissolution of the ‘used’ cohesin complex released from chromatin in both prophase and anaphase.
Abstract: Cornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (~5%) and SMC3 (<1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin, and in yeast, the class I histone deacetylase Hos1 deacetylates SMC3 during anaphase. Here we identify HDAC8 as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the ‘used’ cohesin complex released from chromatin in both prophase and anaphase. SMC3 with retained acetylation is loaded onto chromatin, and chromatin immunoprecipitation sequencing analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations.

497 citations

Journal ArticleDOI
TL;DR: It is suggested that the change in electronic density at the brim of the minor groove, introduced by the LNA modification, is causing an alteration of the pseudorotational profile of the 3'-flanking nucleotide, thus shifting this sugar equilibrium toward N-type conformation.
Abstract: Locked nucleic acids (LNAs) containing one or more 2‘-O,4‘-C-methylene-linked bicyclic ribonucleoside monomers possess a number of the prerequisites of an effective antisense oligonucleotide, e.g. ...

252 citations

Journal ArticleDOI
TL;DR: Data suggest that the location of certain exchanges makes a tetrad susceptible to non-disjunction, and this susceptibility is associated with the distance between the centromere and closest exchange.
Abstract: Recent studies of trisomy 21 have shown that altered levels of recombination are associated with maternal non-disjunction occurring at both meiosis I (MI) and meiosis II (MII). To comprehend better the association of recombination with nondisjunction, an understanding of the pattern of meiotic exchange, i.e. the exchange of genetic material at the four-strand stage during prophase, is required. We examined this underlying exchange pattern to determine if specific meiotic configurations are associated with a higher risk of non-disjunction than others. We examined the crossover frequencies of chromosome 21 for three populations: (i) normal female meiotic events; (ii) meiotic events leading to MI non-disjunction; and (iii) those leading to MII non-disjunction. From these crossover frequencies, we estimated the array of meiotic tetrads that produced the observed crossovers. Using this approach, we found that nearly one-half of MI errors were estimated to be achiasmate. The majority of the remaining MI bivalents had exchanges that clustered at the telomere. In contrast, exchanges occurring among MII cases clustered at the pericentromeric region of the chromosome. Unlike the single exchange distributions, double exchanges from the non-disjoined populations seemed to approximate the distribution in the normal population. These data suggest that the location of certain exchanges makes a tetrad susceptible to non-disjunction. Specifically, this susceptibility is associated with the distance between the centromere and closest exchange. This result challenges the widely held concept that events occurring at MII are largely independent of events occurring at MI, and suggests that all non-disjunction events may be initiated during MI and simply resolved at either of the two meiotic stages.

218 citations

Journal ArticleDOI
TL;DR: It is proposed that the exceptional stability of the LNA modified duplexes is caused by a quenching of concerted local backbone motions by the L NA nucleotides in ssLNA so as to decrease the entropy loss on duplex formation combined with a more efficient stacking of the nucleobases.
Abstract: We have used 2D NMR spectroscopy to study the sugar conformations of oligonucleotides containing a conformationally restricted nucleotide (LNA) with a 2'-O, 4'-C-methylene bridge. We have investigated a modified 9-mer single stranded oligonucleotide as well as three 9- and 10-mer modified oligonucleotides hybridized to unmodified DNA. The single-stranded LNA contained three modifications whereas the duplexes contained one, three and four modifications, respectively. The LNA:DNA duplexes have normal Watson-Crick base-pairing with all the nucleotides in anti-conformation. By use of selective DQF-COSY spectra we determined the ratio between the N-type (C3'-endo) and S-type (C2'-endo) sugar conformations of the nucleotides. In contrast to the corresponding single-stranded DNA (ssDNA), we found that the sugar conformations of the single-stranded LNA oligonucleotide (ssLNA) cannot be described by a major S-type conformer of all the nucleotides. The nucleotides flanking an LNA nucleotide have sugar conformations with a significant population of the N-type conformer. Similarly, the sugar conformations of the nucleotides in the LNA:DNA duplexes flanking a modification were also shown to have significant contributions from the N-type conformation. In all cases, the sugar conformations of the nucleotides in the complementary DNA strand in the duplex remain in the S-type conformation. We found that the locked conformation of the LNA nucleotides both in ssLNA and in the duplexes organize the phosphate backbone in such a way as to introduce higher population of the N-type conformation. These conformational changes are associated with an improved stacking of the nucleobases. Based on the results reported herein, we propose that the exceptional stability of the LNA modified duplexes is caused by a quenching of concerted local backbone motions (preorganization) by the LNA nucleotides in ssLNA so as to decrease the entropy loss on duplex formation combined with a more efficient stacking of the nucleobases.

215 citations

Journal ArticleDOI
TL;DR: In this paper, the authors showed that the initial pairing between Sok-RNA and its target in hok mRNA occurs with an observed second-order rate-constant of 2 x 10(6) M(-1) s(-1).

166 citations


Cited by
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
TL;DR: The SWISS-MODEL workspace is a web-based integrated service dedicated to protein structure homology modelling that assists and guides the user in building protein homology models at different levels of complexity.
Abstract: Motivation: Homology models of proteins are of great interest for planning and analysing biological experiments when no experimental three-dimensional structures are available. Building homology models requires specialized programs and up-to-date sequence and structural databases. Integrating all required tools, programs and databases into a single web-based workspace facilitates access to homology modelling from a computer with web connection without the need of downloading and installing large program packages and databases. Results: SWISS-MODEL workspace is a web-based integrated service dedicated to protein structure homology modelling. It assists and guides the user in building protein homology models at different levels of complexity. A personal working environment is provided for each user where several modelling projects can be carried out in parallel. Protein sequence and structure databases necessary for modelling are accessible from the workspace and are updated in regular intervals. Tools for template selection, model building and structure quality evaluation can be invoked from within the workspace. Workflow and usage of the workspace are illustrated by modelling human Cyclin A1 and human Transmembrane Protease 3. Availability: The SWISS-MODEL workspace can be accessed freely at http://swissmodel.expasy.org/workspace/ Contact: Torsten.Schwede@unibas.ch Supplementary information: Supplementary data are available at Bioinformatics online.

7,107 citations

Journal ArticleDOI
TL;DR: Despite the devastating clinical consequences of aneuploidy, relatively little is known of how trisomy and monosomy originate in humans, but recent molecular and cytogenetic approaches are now beginning to shed light on the non-disjunctional processes that lead to aneuPLoidy.
Abstract: Aneuploidy (trisomy or monosomy) is the most commonly identified chromosome abnormality in humans, occurring in at least 5% of all clinically recognized pregnancies. Most aneuploid conceptuses perish in utero, which makes this the leading genetic cause of pregnancy loss. However, some aneuploid fetuses survive to term and, as a class, aneuploidy is the most common known cause of mental retardation. Despite the devastating clinical consequences of aneuploidy, relatively little is known of how trisomy and monosomy originate in humans. However, recent molecular and cytogenetic approaches are now beginning to shed light on the non-disjunctional processes that lead to aneuploidy.

2,200 citations

Journal ArticleDOI
TL;DR: I. Foldamer Research 3910 A. Backbones Utilizing Bipyridine Segments 3944 1.
Abstract: III. Foldamer Research 3910 A. Overview 3910 B. Motivation 3910 C. Methods 3910 D. General Scope 3912 IV. Peptidomimetic Foldamers 3912 A. The R-Peptide Family 3913 1. Peptoids 3913 2. N,N-Linked Oligoureas 3914 3. Oligopyrrolinones 3915 4. Oxazolidin-2-ones 3916 5. Azatides and Azapeptides 3916 B. The â-Peptide Family 3917 1. â-Peptide Foldamers 3917 2. R-Aminoxy Acids 3937 3. Sulfur-Containing â-Peptide Analogues 3937 4. Hydrazino Peptides 3938 C. The γ-Peptide Family 3938 1. γ-Peptide Foldamers 3938 2. Other Members of the γ-Peptide Family 3941 D. The δ-Peptide Family 3941 1. Alkene-Based δ-Amino Acids 3941 2. Carbopeptoids 3941 V. Single-Stranded Abiotic Foldamers 3944 A. Overview 3944 B. Backbones Utilizing Bipyridine Segments 3944 1. Pyridine−Pyrimidines 3944 2. Pyridine−Pyrimidines with Hydrazal Linkers 3945

1,922 citations

Journal ArticleDOI
TL;DR: W whole-exome sequencing identified the underlying genetic defect in 25% of consecutive patients referred for evaluation of a possible genetic condition.
Abstract: Background Whole-exome sequencing is a diagnostic approach for the identification of molecular defects in patients with suspected genetic disorders. Methods We developed technical, bioinformatic, interpretive, and validation pipelines for whole-exome sequencing in a certified clinical laboratory to identify sequence variants underlying disease phenotypes in patients. Results We present data on the first 250 probands for whom referring physicians ordered whole-exome sequencing. Patients presented with a range of phenotypes suggesting potential genetic causes. Approximately 80% were children with neurologic phenotypes. Insurance coverage was similar to that for established genetic tests. We identified 86 mutated alleles that were highly likely to be causative in 62 of the 250 patients, achieving a 25% molecular diagnostic rate (95% confidence interval, 20 to 31). Among the 62 patients, 33 had autosomal dominant disease, 16 had autosomal recessive disease, and 9 had X-linked disease. A total of 4 probands re...

1,727 citations