scispace - formally typeset
Search or ask a question
Author

Michael B. Sporn

Bio: Michael B. Sporn is an academic researcher from Dartmouth College. The author has contributed to research in topics: Transforming growth factor & Transforming growth factor beta. The author has an hindex of 157, co-authored 559 publications receiving 94605 citations. Previous affiliations of Michael B. Sporn include Cornell University & Reata Pharmaceuticals.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel transforming growth factor-beta (TGF-beta) mRNA of about 3.0 kilobases, which encodes a putative protein of 382 amino acids, has been identified in amphibians by cDNA cloning and is developmentally regulated and highly expressed beginning at early neurula and in many adult tissues in Xenopus laevis.

170 citations

Journal ArticleDOI
TL;DR: The concept of autocrine secretion, its subsequent modifications, its application for understanding pathogenesis of disease, and its potential for developing new approaches to prevention and treatment are reviewed.
Abstract: The concept of autocrine secretion, its subsequent modifications, its application for understanding pathogenesis of disease, and its potential for developing new approaches to prevention and treatment are reviewed. Peptide growth factors (cytokines) act as local autocrine and paracrine mediators of tissue homeostasis. Many diseases, including cancer, atherosclerosis, rheumatoid arthritis, and other fibrotic diseases characterized by chronic inflammation, are associated with aberrant expression and cellular coordination of the homeostatic action of these regulatory molecules. Modern biotechnology and pharmacology offer unique opportunities for the therapeutic prevention and treatment of these molecular and cellular lesions, using either cytokines or other agents that modify their synthesis and activity.

169 citations

Journal ArticleDOI
TL;DR: Results demonstrate that activation of the Nrf2-dependent antioxidative pathway by CDDO-Im orCDDO-Me protects against the LPS-induced inflammatory response and suggest that they can be potential therapeutic candidates for intervening sepsis syndrome.
Abstract: Sepsis is characterized by an inappropriate host immune-inflammatory response and sustained oxidative damage. Nrf2, a bZIP oxidant-responsive transcription factor, regulates a battery of cytoprotective genes including antioxidants and maintains cellular redox homeostasis. Mouse studies have demonstrated a critical role of Nrf2 in improving survival during sepsis. This preclinical ex vivo study using neutrophils and peripheral blood mononuclear cells (PBMCs) as a surrogate cells evaluates the efficacy of CDDO-Im and CDDO-Me [imidazole and methyl ester derivative of 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO)] to activate the Nrf2 pathway and protect from lipopolysaccharide (LPS)-induced inflammatory response in humans. CDDO-Im treatment significantly induced Nrf2–dependent antioxidative genes (HO-1, GCLC, GCLM, and NQO1) in PBMCs isolated from six normal subjects. CDDO-Im increased nuclear accumulation of Nrf2 protein. Pretreatment of PBMC by CDDO-Im significantly attenuated LPS-induced cytoki...

169 citations

Journal ArticleDOI
TL;DR: Results clearly illustrate that targeted cytoprotection of hepatocytes through Nrf2 signaling during inflammation prevents the amplification of inflammatory responses in the liver.

165 citations

Journal ArticleDOI
01 Jun 2009-PLOS ONE
TL;DR: The results indicate that the CDDO-MA renders its neuroprotective effects through its potent activation of the Nrf2/ARE pathway, and suggest that triterpenoids may be beneficial for the treatment of neurodegenerative diseases like Parkinson's disease and Huntington's disease.
Abstract: The NF-E2-related factor-2 (Nrf2)/antioxidant response element (ARE) signaling pathway regulates phase 2 detoxification genes, including a variety of antioxidative enzymes. We tested neuroprotective effects of the synthetic triterpenoid CDDO-MA, a potent activator of the Nrf2/ARE signaling. CDDO-MA treatment of neuroblastoma SH-SY5Y cells resulted in Nrf2 upregulation and translocation from cytosol to nucleus and subsequent activation of ARE pathway genes. CDDO-MA blocked t-butylhydroperoxide-induced production of reactive oxygen species (ROS) by activation of ARE genes only in wild type, but not Nrf2 knockout mouse embryonic fibroblasts. Oral administration of CDDO-MA resulted in significant protection against MPTP-induced nigrostriatal dopaminergic neurodegeneration, pathological alpha-synuclein accumulation and oxidative damage in mice. Additionally, CDDO-MA treatment in rats produced significant rescue against striatal lesions caused by the neurotoxin 3-NP, and associated increases in the oxidative damage markers malondialdehyde, F2-Isoprostanes, 8-hydroxy-2-deoxyguanosine, 3-nitrotyrosine, and impaired glutathione homeostasis. Our results indicate that the CDDO-MA renders its neuroprotective effects through its potent activation of the Nrf2/ARE pathway, and suggest that triterpenoids may be beneficial for the treatment of neurodegenerative diseases like Parkinson's disease and Huntington's disease.

164 citations


Cited by
More filters
Journal ArticleDOI
07 Jan 2000-Cell
TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.

28,811 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
29 Apr 1993-Nature
TL;DR: The ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.
Abstract: Atherosclerosis, the principal cause of heart attack, stroke and gangrene of the extremities, is responsible for 50% of all mortality in the USA, Europe and Japan. The lesions result from an excessive, inflammatory-fibroproliferative response to various forms of insult to the endothelium and smooth muscle of the artery wall. A large number of growth factors, cytokines and vasoregulatory molecules participate in this process. Our ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.

10,861 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The principal mechanisms that govern the effects of inflammation and immunity on tumor development are outlined and attractive new targets for cancer therapy and prevention are discussed.

8,664 citations

Journal ArticleDOI
TL;DR: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms and mutations in these pathways are the cause of various forms of human cancer and developmental disorders.
Abstract: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms. Work over the past few years has led to the elucidation of a TGF-beta signal transduction network. This network involves receptor serine/threonine kinases at the cell surface and their substrates, the SMAD proteins, which move into the nucleus, where they activate target gene transcription in association with DNA-binding partners. Distinct repertoires of receptors, SMAD proteins, and DNA-binding partners seemingly underlie, in a cell-specific manner, the multifunctional nature of TGF-beta and related factors. Mutations in these pathways are the cause of various forms of human cancer and developmental disorders.

7,710 citations