scispace - formally typeset
Search or ask a question
Author

Michael B. Sporn

Bio: Michael B. Sporn is an academic researcher from Dartmouth College. The author has contributed to research in topics: Transforming growth factor & Transforming growth factor beta. The author has an hindex of 157, co-authored 559 publications receiving 94605 citations. Previous affiliations of Michael B. Sporn include Cornell University & Reata Pharmaceuticals.


Papers
More filters
Journal ArticleDOI
TL;DR: Bio-assays using primary mouse macrophages and tumor cell lines indicate potent anti-inflammatory and cytotoxic activities associated with cyanoenones of boswellic acid and glycyrrhetinic acid.

72 citations

Journal ArticleDOI
TL;DR: In this paper, the complete amino acid sequence of bovine transforming growth factor-beta 1 (TGF beta 1) was deduced from isolated cDNA clones encoding the protein using a human cDNA probe.
Abstract: Transforming growth factor-beta 1 (TGF beta 1) has been purified from a number of different sources and has a broad species specificity. To deduce the complete amino acid sequence of bovine TGF beta 1 we have isolated cDNA clones encoding the protein from a bovine fibropapilloma library using a human cDNA probe. Sequence analysis of two independent cDNA clones revealed that the 112 amino acids corresponding to bovine TGF beta 1 are identical to those of the human and porcine proteins. This unusually high degree of conservation in the primary structure of the human and bovine proteins reflects the strong evolutionary constraints for maintenance of structure and function of the molecule. As in the human, murine, and porcine systems, the mature form of TGF beta 1 is derived by proteolytic cleavage of a larger precursor. Small differences in amino acid sequence were observed in the portion of the precursor that does not include mature TGF beta 1, although 92% of the residues are still conserved. A 2.25 kilobase (kb) mRNA was identified in total bovine wart and bone RNA, whereas no message was detected in polyadenylated spleen or brain RNA. In addition to the major 2.25 kb message, we observed a 1.9 kb transcript in poly(A+) RNA from wart tissue.

72 citations

Journal Article
TL;DR: Mechanistic studies in cell culture reported here suggest that enhancement of stromal-epithelial interactions may contribute to this synergy between arzoxifene and LG 100268.
Abstract: The selective estrogen receptor modulator arzoxifene and the rexinoid LG 100268 were active not only as single agents for prevention and treatment of breast cancer in the rat model that uses nitrosomethylurea as the carcinogen but also showed striking synergy, both preventively and therapeutically, in a series of six experiments with a total of 465 rats. Mechanistic studies in cell culture reported here suggest that enhancement of stromal-epithelial interactions may contribute to this synergy. The possible clinical use of the combination of arzoxifene and LG 100268 for prevention of breast cancer in women at high risk, for treatment of women in the adjuvant setting, or for treatment of end-stage disease should now be considered.

72 citations

Journal ArticleDOI
TL;DR: CDDO-Me and 268 are useful as individual drugs to prevent ER-negative mammary tumorigenesis and to treat established tumors and synergize when used in combination for prevention.
Abstract: Purpose: To test whether the triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) and the rexinoid LG100268 (268) prevent the formation of estrogen receptor (ER)–negative mammary tumors or either arrest the growth or cause regression of established tumors in MMTV-neu mice. Experimental Design: For prevention, mice were fed control diet, CDDO-Me (60 mg/kg diet), 268 (20 mg/kg diet), or the combination for 45 weeks. For treatment, mice with established tumors at least 4 mm in diameter were fed control diet, CDDO-Me (100 mg/kg diet), 268 (60 mg/kg diet), or the combination for 4 weeks. Results: CDDO-Me and 268 significantly delayed the development of ER-negative tumors, with a 14- and 24-week delay, respectively, compared with the control group for the time required to reach 50% tumor incidence. The combination of CDDO-Me and 268 was significantly more potent than the individual drugs, as only one tumor was found in the combination group, after 45 weeks on diet, at which time all control animals had tumors. Treating established tumors with CDDO-Me arrested the growth of 86% of the tumors, and 268 induced tumor regression in 85% of tumors. CDDO-Me and 268 target different signaling pathways and cell types. CDDO-Me inhibited constitutive STAT3 phosphorylation and the degradation of IKBα in ER-negative breast cancer cells, whereas 268 blocked IKBα degradation and the release of interleukin-6 in RAW264.7 macrophage-like cells, inhibited the ability of endothelial cells to organize into networks, and blocked angiogenesis in vivo . Conclusions: CDDO-Me and 268 are useful as individual drugs to prevent ER-negative mammary tumorigenesis and to treat established tumors. They synergize when used in combination for prevention.

70 citations


Cited by
More filters
Journal ArticleDOI
07 Jan 2000-Cell
TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.

28,811 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
29 Apr 1993-Nature
TL;DR: The ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.
Abstract: Atherosclerosis, the principal cause of heart attack, stroke and gangrene of the extremities, is responsible for 50% of all mortality in the USA, Europe and Japan. The lesions result from an excessive, inflammatory-fibroproliferative response to various forms of insult to the endothelium and smooth muscle of the artery wall. A large number of growth factors, cytokines and vasoregulatory molecules participate in this process. Our ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.

10,861 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The principal mechanisms that govern the effects of inflammation and immunity on tumor development are outlined and attractive new targets for cancer therapy and prevention are discussed.

8,664 citations

Journal ArticleDOI
TL;DR: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms and mutations in these pathways are the cause of various forms of human cancer and developmental disorders.
Abstract: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms. Work over the past few years has led to the elucidation of a TGF-beta signal transduction network. This network involves receptor serine/threonine kinases at the cell surface and their substrates, the SMAD proteins, which move into the nucleus, where they activate target gene transcription in association with DNA-binding partners. Distinct repertoires of receptors, SMAD proteins, and DNA-binding partners seemingly underlie, in a cell-specific manner, the multifunctional nature of TGF-beta and related factors. Mutations in these pathways are the cause of various forms of human cancer and developmental disorders.

7,710 citations