scispace - formally typeset
Search or ask a question
Author

Michael Boehnke

Bio: Michael Boehnke is an academic researcher from University of Michigan. The author has contributed to research in topics: Genome-wide association study & Type 2 diabetes. The author has an hindex of 152, co-authored 511 publications receiving 136681 citations. Previous affiliations of Michael Boehnke include SUNY Downstate Medical Center & Norwegian University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: Investigation of a greater diversity of populations could make substantial contributions to the goal of mapping the genetic determinants of complex diseases for the human population as a whole.
Abstract: Genome-wide association (GWA) studies have identified a large number of SNPs associated with disease phenotypes. As most GWA studies have been performed in populations of European descent, this Review examines the issues involved in extending the consideration of GWA studies to diverse worldwide populations. Although challenges exist with issues such as imputation, admixture and replication, investigation of a greater diversity of populations could make substantial contributions to the goal of mapping the genetic determinants of complex diseases for the human population as a whole.

573 citations

Journal ArticleDOI
Douglas M. Ruderfer1, Stephan Ripke2, Stephan Ripke3, Stephan Ripke4  +628 moreInstitutions (156)
14 Jun 2018-Cell
TL;DR: For the first time, specific loci that distinguish between BD and SCZ are discovered and polygenic components underlying multiple symptom dimensions are identified that point to the utility of genetics to inform symptomology and potential treatment.

569 citations

Journal ArticleDOI
TL;DR: The Metabochip and its component SNP sets are described and evaluated, its performance in capturing variation across the allele-frequency spectrum is evaluated, solutions to methodological challenges commonly encountered in its analysis are described, and its performance as a platform for genotype imputation is evaluated.
Abstract: Genome-wide association studies have identified hundreds of loci for type 2 diabetes, coronary artery disease and myocardial infarction, as well as for related traits such as body mass index, glucose and insulin levels, lipid levels, and blood pressure. These studies also have pointed to thousands of loci with promising but not yet compelling association evidence. To establish association at additional loci and to characterize the genome-wide significant loci by fine-mapping, we designed the ‘‘Metabochip,’’ a custom genotyping array that assays nearly 200,000 SNP markers. Here, we describe the Metabochip and its component SNP sets, evaluate its performance in capturing variation across the allele-frequency spectrum, describe solutions to methodological challenges commonly encountered in its analysis, and evaluate its performance as a platform for genotype imputation. The metabochip achieves dramatic cost efficiencies compared to designing single-trait follow-up reagents, and provides the opportunity to compare results across a range of related traits. The metabochip and similar custom genotyping arrays offer a powerful and cost-effective approach to follow-up large-scale genotyping and sequencing studies and advance our understanding of the genetic basis of complex human diseases and traits.

516 citations

Cecilia M. Lindgren, Iris M. Heid, Joshua C. Randall, Claudia Lamina, Valgerdur Steinthorsdottir, Lu Qi, Elizabeth K. Speliotes, Gudmar Thorleifsson, Cristen J. Willer, Blanca M. Herrera, Anne U. Jackson, Noha Lim, Paul Scheet, Nicole Soranzo, Najaf Amin, Yurii S. Aulchenko, John C. Chambers, Alexander W. Drong, Jian'an Luan, Helen N. Lyon, Fernando Rivadeneira, Serena Sanna, Nicholas J. Timpson, M. Carola Zillikens, Jing Hua Zhao, Peter Almgren, Stefania Bandinelli, Amanda J. Bennett, Richard N. Bergman, Lori L. Bonnycastle, Suzannah Bumpstead, Stephen J. Chanock, Lynn Cherkas, Peter S. Chines, Lachlan J. M. Coin, Cyrus Cooper, Gabriel Crawford, Angela Doering, Anna F. Dominiczak, Alex S. F. Doney, Shah Ebrahim, Paul Elliott, Michael R. Erdos, Karol Estrada, Luigi Ferrucci, Guido Fischer, Nita G. Forouhi, Christian Gieger, Harald Grallert, Christopher J. Groves, Scott M. Grundy, Candace Guiducci, David Hadley, Anders Hamsten, Aki S. Havulinna, Albert Hofman, Rolf Holle, John W. Holloway, Thomas Illig, Bo Isomaa, Leonie C. Jacobs, Karen A. Jameson, Pekka Jousilahti, Fredrik Karpe, Johanna Kuusisto, Jaana Laitinen, G. Mark Lathrop, Debbie A Lawlor, Massimo Mangino, Wendy L. McArdle, Thomas Meitinger, Mario A. Morken, Andrew P. Morris, Patricia B. Munroe, Narisu Narisu, Anna Nordström, Peter Nordström, Ben A. Oostra, Colin N. A. Palmer, Felicity Payne, John F. Peden, Inga Prokopenko, Frida Renström, Aimo Ruokonen, Veikko Salomaa, Manjinder S. Sandhu, Laura J. Scott, Angelo Scuteri, Kaisa Silander, Kijoung Song, Xin Yuan, Heather M. Stringham, Amy J. Swift, Tiinamaija Tuomi, Manuela Uda, Peter Vollenweider, Gérard Waeber, Chris Wallace, G. Bragi Walters, Michael N. Weedon, Jacqueline C.M. Witteman, Cuilin Zhang, Weihua Zhang, Mark J. Caulfield, Francis S. Collins, George Davey Smith, Ian N.M. Day, Paul W. Franks, Andrew T. Hattersley, Frank B. Hu, Marjo-Riitta Järvelin, Augustine Kong, Jaspal S. Kooner, Markku Laakso, Edward G. Lakatta, Vincent Mooser, Andrew D. Morris, Leena Peltonen, Nilesh J. Samani, Tim D. Spector, David P. Strachan, Toshiko Tanaka, Jaakko Tuomilehto, André G. Uitterlinden, Cornelia M. van Duijn, Nicholas J. Wareham, Dawn M. Waterworth, Michael Boehnke, Panos Deloukas, Leif Groop, David J. Hunter, Unnur Thorsteinsdottir, David Schlessinger, H.-Erich Wichmann, Timothy M. Frayling, Gonçalo R. Abecasis, Joel N. Hirschhorn, Ruth J. F. Loos, Kari Stefansson, Karen L. Mohlke, Inês Barroso 
01 Jun 2009
TL;DR: Vandervell Foundation and Wellcome Trust (068545/Z/02, GR072960 as discussed by the authors, GR076113, GR069224, GR086596/Z /08/Z)
Abstract: Vandervell Foundation and Wellcome Trust (068545/Z/02, GR072960, GR076113, GR069224, 086596/Z/08/Z)

476 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.
Abstract: Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our understanding of genetic variation among individuals. However, the massive data sets generated by NGS—the 1000 Genome pilot alone includes nearly five terabases—make writing feature-rich, efficient, and robust analysis tools difficult for even computationally sophisticated individuals. Indeed, many professionals are limited in the scope and the ease with which they can answer scientific questions by the complexity of accessing and manipulating the data produced by these machines. Here, we discuss our Genome Analysis Toolkit (GATK), a structured programming framework designed to ease the development of efficient and robust analysis tools for next-generation DNA sequencers using the functional programming philosophy of MapReduce. The GATK provides a small but rich set of data access patterns that encompass the majority of analysis tool needs. Separating specific analysis calculations from common data management infrastructure enables us to optimize the GATK framework for correctness, stability, and CPU and memory efficiency and to enable distributed and shared memory parallelization. We highlight the capabilities of the GATK by describing the implementation and application of robust, scale-tolerant tools like coverage calculators and single nucleotide polymorphism (SNP) calling. We conclude that the GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.

20,557 citations

Journal ArticleDOI
Giuseppe Mancia1, Robert Fagard, Krzysztof Narkiewicz, Josep Redon, Alberto Zanchetti, Michael Böhm, Thierry Christiaens, Renata Cifkova, Guy De Backer, Anna F. Dominiczak, Maurizio Galderisi, Diederick E. Grobbee, Tiny Jaarsma, Paulus Kirchhof, Sverre E. Kjeldsen, Stéphane Laurent, Athanasios J. Manolis, Peter M. Nilsson, Luis M. Ruilope, Roland E. Schmieder, Per Anton Sirnes, Peter Sleight, Margus Viigimaa, Bernard Waeber, Faiez Zannad, Michel Burnier, Ettore Ambrosioni, Mark Caufield, Antonio Coca, Michael H. Olsen, Costas Tsioufis, Philippe van de Borne, José Luis Zamorano, Stephan Achenbach, Helmut Baumgartner, Jeroen J. Bax, Héctor Bueno, Veronica Dean, Christi Deaton, Çetin Erol, Roberto Ferrari, David Hasdai, Arno W. Hoes, Juhani Knuuti, Philippe Kolh2, Patrizio Lancellotti, Aleš Linhart, Petros Nihoyannopoulos, Massimo F Piepoli, Piotr Ponikowski, Juan Tamargo, Michal Tendera, Adam Torbicki, William Wijns, Stephan Windecker, Denis Clement, Thierry C. Gillebert, Enrico Agabiti Rosei, Stefan D. Anker, Johann Bauersachs, Jana Brguljan Hitij, Mark J. Caulfield, Marc De Buyzere, Sabina De Geest, Geneviève Derumeaux, Serap Erdine, Csaba Farsang, Christian Funck-Brentano, Vjekoslav Gerc, Giuseppe Germanò, Stephan Gielen, Herman Haller, Jens Jordan, Thomas Kahan, Michel Komajda, Dragan Lovic, Heiko Mahrholdt, Jan Östergren, Gianfranco Parati, Joep Perk, Jorge Polónia, Bogdan A. Popescu, Zeljko Reiner, Lars Rydén, Yuriy Sirenko, Alice Stanton, Harry A.J. Struijker-Boudier, Charalambos Vlachopoulos, Massimo Volpe, David A. Wood 
TL;DR: In this article, a randomized controlled trial of Aliskiren in the Prevention of Major Cardiovascular Events in Elderly people was presented. But the authors did not discuss the effect of the combination therapy in patients living with systolic hypertension.
Abstract: ABCD : Appropriate Blood pressure Control in Diabetes ABI : ankle–brachial index ABPM : ambulatory blood pressure monitoring ACCESS : Acute Candesartan Cilexetil Therapy in Stroke Survival ACCOMPLISH : Avoiding Cardiovascular Events in Combination Therapy in Patients Living with Systolic Hypertension ACCORD : Action to Control Cardiovascular Risk in Diabetes ACE : angiotensin-converting enzyme ACTIVE I : Atrial Fibrillation Clopidogrel Trial with Irbesartan for Prevention of Vascular Events ADVANCE : Action in Diabetes and Vascular Disease: Preterax and Diamicron-MR Controlled Evaluation AHEAD : Action for HEAlth in Diabetes ALLHAT : Antihypertensive and Lipid-Lowering Treatment to Prevent Heart ATtack ALTITUDE : ALiskiren Trial In Type 2 Diabetes Using Cardio-renal Endpoints ANTIPAF : ANgioTensin II Antagonist In Paroxysmal Atrial Fibrillation APOLLO : A Randomized Controlled Trial of Aliskiren in the Prevention of Major Cardiovascular Events in Elderly People ARB : angiotensin receptor blocker ARIC : Atherosclerosis Risk In Communities ARR : aldosterone renin ratio ASCOT : Anglo-Scandinavian Cardiac Outcomes Trial ASCOT-LLA : Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm ASTRAL : Angioplasty and STenting for Renal Artery Lesions A-V : atrioventricular BB : beta-blocker BMI : body mass index BP : blood pressure BSA : body surface area CA : calcium antagonist CABG : coronary artery bypass graft CAPPP : CAPtopril Prevention Project CAPRAF : CAndesartan in the Prevention of Relapsing Atrial Fibrillation CHD : coronary heart disease CHHIPS : Controlling Hypertension and Hypertension Immediately Post-Stroke CKD : chronic kidney disease CKD-EPI : Chronic Kidney Disease—EPIdemiology collaboration CONVINCE : Controlled ONset Verapamil INvestigation of CV Endpoints CT : computed tomography CV : cardiovascular CVD : cardiovascular disease D : diuretic DASH : Dietary Approaches to Stop Hypertension DBP : diastolic blood pressure DCCT : Diabetes Control and Complications Study DIRECT : DIabetic REtinopathy Candesartan Trials DM : diabetes mellitus DPP-4 : dipeptidyl peptidase 4 EAS : European Atherosclerosis Society EASD : European Association for the Study of Diabetes ECG : electrocardiogram EF : ejection fraction eGFR : estimated glomerular filtration rate ELSA : European Lacidipine Study on Atherosclerosis ESC : European Society of Cardiology ESH : European Society of Hypertension ESRD : end-stage renal disease EXPLOR : Amlodipine–Valsartan Combination Decreases Central Systolic Blood Pressure more Effectively than the Amlodipine–Atenolol Combination FDA : U.S. Food and Drug Administration FEVER : Felodipine EVent Reduction study GISSI-AF : Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico-Atrial Fibrillation HbA1c : glycated haemoglobin HBPM : home blood pressure monitoring HOPE : Heart Outcomes Prevention Evaluation HOT : Hypertension Optimal Treatment HRT : hormone replacement therapy HT : hypertension HYVET : HYpertension in the Very Elderly Trial IMT : intima-media thickness I-PRESERVE : Irbesartan in Heart Failure with Preserved Systolic Function INTERHEART : Effect of Potentially Modifiable Risk Factors associated with Myocardial Infarction in 52 Countries INVEST : INternational VErapamil SR/T Trandolapril ISH : Isolated systolic hypertension JNC : Joint National Committee JUPITER : Justification for the Use of Statins in Primary Prevention: an Intervention Trial Evaluating Rosuvastatin LAVi : left atrial volume index LIFE : Losartan Intervention For Endpoint Reduction in Hypertensives LV : left ventricle/left ventricular LVH : left ventricular hypertrophy LVM : left ventricular mass MDRD : Modification of Diet in Renal Disease MRFIT : Multiple Risk Factor Intervention Trial MRI : magnetic resonance imaging NORDIL : The Nordic Diltiazem Intervention study OC : oral contraceptive OD : organ damage ONTARGET : ONgoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial PAD : peripheral artery disease PATHS : Prevention And Treatment of Hypertension Study PCI : percutaneous coronary intervention PPAR : peroxisome proliferator-activated receptor PREVEND : Prevention of REnal and Vascular ENdstage Disease PROFESS : Prevention Regimen for Effectively Avoiding Secondary Strokes PROGRESS : Perindopril Protection Against Recurrent Stroke Study PWV : pulse wave velocity QALY : Quality adjusted life years RAA : renin-angiotensin-aldosterone RAS : renin-angiotensin system RCT : randomized controlled trials RF : risk factor ROADMAP : Randomized Olmesartan And Diabetes MicroAlbuminuria Prevention SBP : systolic blood pressure SCAST : Angiotensin-Receptor Blocker Candesartan for Treatment of Acute STroke SCOPE : Study on COgnition and Prognosis in the Elderly SCORE : Systematic COronary Risk Evaluation SHEP : Systolic Hypertension in the Elderly Program STOP : Swedish Trials in Old Patients with Hypertension STOP-2 : The second Swedish Trial in Old Patients with Hypertension SYSTCHINA : SYSTolic Hypertension in the Elderly: Chinese trial SYSTEUR : SYSTolic Hypertension in Europe TIA : transient ischaemic attack TOHP : Trials Of Hypertension Prevention TRANSCEND : Telmisartan Randomised AssessmeNt Study in ACE iNtolerant subjects with cardiovascular Disease UKPDS : United Kingdom Prospective Diabetes Study VADT : Veterans' Affairs Diabetes Trial VALUE : Valsartan Antihypertensive Long-term Use Evaluation WHO : World Health Organization ### 1.1 Principles The 2013 guidelines on hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology …

14,173 citations

Journal ArticleDOI
TL;DR: Haploview is a software package that provides computation of linkage disequilibrium statistics and population haplotype patterns from primary genotype data in a visually appealing and interactive interface.
Abstract: Summary: Research over the last few years has revealed significant haplotype structure in the human genome. The characterization of these patterns, particularly in the context of medical genetic association studies, is becoming a routine research activity. Haploview is a software package that provides computation of linkage disequilibrium statistics and population haplotype patterns from primary genotype data in a visually appealing and interactive interface. Availability: http://www.broad.mit.edu/mpg/haploview/ Contact: jcbarret@broad.mit.edu

13,862 citations

Journal ArticleDOI
TL;DR: Version 5 implements a number of new features and analytical methods allowing extensive DNA polymorphism analyses on large datasets, including visualizing sliding window results integrated with available genome annotations in the UCSC browser.
Abstract: Motivation: DnaSP is a software package for a comprehensive analysis of DNA polymorphism data. Version 5 implements a number of new features and analytical methods allowing extensive DNA polymorphism analyses on large datasets. Among other features, the newly implemented methods allow for: (i) analyses on multiple data files; (ii) haplotype phasing; (iii) analyses on insertion/deletion polymorphism data; (iv) visualizing sliding window results integrated with available genome annotations in the UCSC browser. Availability: Freely available to academic users from: http://www.ub.edu/dnasp Contact: [email protected]

13,511 citations

Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations