scispace - formally typeset
Search or ask a question
Author

Michael Bonkowski

Bio: Michael Bonkowski is an academic researcher from University of Cologne. The author has contributed to research in topics: Rhizosphere & Soil biology. The author has an hindex of 66, co-authored 279 publications receiving 13851 citations. Previous affiliations of Michael Bonkowski include Southern Illinois University School of Medicine & Zoological Institute.


Papers
More filters
Journal ArticleDOI
25 Nov 2010-Nature
TL;DR: It is shown that plant diversity effects dampen with increasing trophic level and degree of omnivory, and the results suggest that plant Diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophIC levels.
Abstract: Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels However, only a few studies have so far incorporated an explicit food-web perspective In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory This was true both for abundance and species richness of organisms Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores Density and richness of carnivorous taxa was independent of vegetation structure Below-ground responses to plant diversity were consistently weaker than above-ground responses Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades

807 citations

Journal ArticleDOI
TL;DR: Because the regulation of root architecture is a key determinant of nutrient- and water-use efficiency in plants, protozoa provide a model system that may considerably advance the understanding of the mechanisms underlying plant growth and community composition.
Abstract: All nutrients that plants absorb have to pass a region of intense interactions between roots, microorganisms and animals, termed the rhizosphere. Plants allocate a great portion of their photosynthetically fixed carbon to root-infecting symbionts, such asmycorrhizal fungi; another part is released as exudates fuelling mainly free-living rhizobacteria. Rhizobacteria are strongly top-down regulated by microfaunal grazers, particularly protozoa. Consequently, beneficial effects of protozoa on plant growth have been assigned to nutrients released from consumed bacterial biomass, that is, the 'microbial loop'. In recent years however, the recognition of bacterial communication networks, the common exchange of microbial signals with roots and the fact that these signals are used to enhance the efflux of carbon from roots have revolutionized our view of rhizosphere processes. Most importantly, effects of rhizobacteria on root architecture seem to be driven in large by protozoan grazers. Protozoan effects on plant root systems stand in sharp contrast to effects of mycorrhizal fungi. Because the regulation of root architecture is a key determinant of nutrient- and water-use efficiency in plants, protozoa provide a model system that may considerably advance our understanding of the mechanisms underlying plant growth and community composition.

644 citations

Journal ArticleDOI
24 Jul 2019-Nature
TL;DR: High-resolution spatial maps of the global abundance of soil nematodes and the composition of functional groups show that soil nematode are found in higher abundances in sub-Arctic regions, than in temperate or tropical regions.
Abstract: Soil organisms are a crucial part of the terrestrial biosphere. Despite their importance for ecosystem functioning, few quantitative, spatially explicit models of the active belowground community currently exist. In particular, nematodes are the most abundant animals on Earth, filling all trophic levels in the soil food web. Here we use 6,759 georeferenced samples to generate a mechanistic understanding of the patterns of the global abundance of nematodes in the soil and the composition of their functional groups. The resulting maps show that 4.4 ± 0.64 × 1020 nematodes (with a total biomass of approximately 0.3 gigatonnes) inhabit surface soils across the world, with higher abundances in sub-Arctic regions (38% of total) than in temperate (24%) or tropical (21%) regions. Regional variations in these global trends also provide insights into local patterns of soil fertility and functioning. These high-resolution models provide the first steps towards representing soil ecological processes in global biogeochemical models and will enable the prediction of elemental cycling under current and future climate scenarios.

552 citations

Journal ArticleDOI
TL;DR: The sirtuins (SIRT1-7) are a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacylases with remarkable abilities to prevent diseases and even reverse aspects of ageing as discussed by the authors.
Abstract: The sirtuins (SIRT1-7) are a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacylases with remarkable abilities to prevent diseases and even reverse aspects of ageing. Mice engineered to express additional copies of SIRT1 or SIRT6, or treated with sirtuin-activating compounds (STACs) such as resveratrol and SRT2104 or with NAD+ precursors, have improved organ function, physical endurance, disease resistance and longevity. Trials in non-human primates and in humans have indicated that STACs may be safe and effective in treating inflammatory and metabolic disorders, among others. These advances have demonstrated that it is possible to rationally design molecules that can alleviate multiple diseases and possibly extend lifespan in humans.

526 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies.
Abstract: Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies. Contrast analyses identified management related differences between “herbicide-free” bioorganic (BIOORG) and biodynamic (BIODYN) systems and conventional systems with (CONFYM) or without manure (CONMIN) and herbicide application within a long-term agricultural experiment (DOK trial, Switzerland). Soil carbon content was significantly higher in systems receiving farmyard manure and concomitantly microbial biomass (fungi and bacteria) was increased. Microbial activity parameters, such as microbial basal respiration and nitrogen mineralization, showed an opposite pattern, suggesting that soil carbon in the conventional system (CONFYM) was more easily accessible to microorganisms than in organic systems. Bacterivorous nematodes and earthworms were most abundant in systems that received farmyard manure, which is in line with the responses of their potential food sources (microbes and organic matter). Mineral fertilizer application detrimentally affected enchytraeids and Diptera larvae, whereas aphids benefited. Spider abundance was favoured by organic management, most likely a response to increased prey availability from the belowground subsystem or increased weed coverage. In contrast to most soil-based, bottom-up controlled interactions, the twofold higher abundance of this generalist predator group in organic systems likely contributed to the significantly lower abundance of aboveground herbivore pests (aphids) in these systems. Long-term organic farming and the application of farmyard manure promoted soil quality, microbial biomass and fostered natural enemies and ecosystem engineers, suggesting enhanced nutrient cycling and pest control. Mineral fertilizers and herbicide application, in contrast, affected the potential for top-down control of aboveground pests negatively and reduced the organic carbon levels. Our study indicates that the use of synthetic fertilizers and herbicide application changes interactions within and between below and aboveground components, ultimately promoting negative environmental impacts of agriculture by reducing internal biological cycles and pest control. On the contrary, organic farming fosters microbial and faunal decomposers and this propagates into the aboveground system via generalist predators thereby increasing conservation biological control. However, grain and straw yields were 23% higher in systems receiving mineral fertilizers and herbicides reflecting the trade-off between productivity and environmental responsibility.

497 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.
Abstract: Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls. The scientific community has come to a broad consensus on many aspects of the re- lationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are struc- tured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.

6,891 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

BookDOI
TL;DR: In this paper, the authors present a set of methods for soil sampling and analysis, such as: N.H.Hendershot, H.M.Hettiarachchi, C.C.De Freitas Arbuscular Mycorrhiza, Y.K.Soon and W.J.
Abstract: SOIL SAMPLING AND HANDLING, G.T. Patterson and M.R. Carter Soil Sampling Designs, D. Pennock, T. Yates, and J. Braidek Sampling Forest Soils, N. Belanger and K.C.J. Van Rees Measuring Change in Soil Organic Carbon Storage, B.H. Ellert, H.H. Janzen, A.J. VandenBygaart, and E. Bremer Soil Sample Handling and Storage, S.C. Sheppard and J.A. Addison Quality Control in Soil Chemical Analysis, C. Swyngedouw and R. Lessard DIAGNOSTIC METHODS for SOIL and ENVIRONMENTAL MANAGEMENT, J.J. Schoenau and I.P. O'Halloran Nitrate and Exchangeable Ammonium Nitrogen, D.G. Maynard, Y.P. Kalra, and J.A. Crumbaugh Mehlich 3 Extractable Elements, N. Ziadi and T. Sen Tran Sodium Bicarbonate Extractable Phosphorus, J.J. Schoenau and I. P. O'Halloran Boron, Molybdenum and Selenium, G. M. Hettiarachchi and U. C. Gupta Trace Element Assessment, W.H. Hendershot, H. Lalande, D. Reyes, and D. MacDonald Readily Soluble Aluminum and Manganese in Acid Soils, Y.K. Soon, N. Belanger, and W.H. Hendershot Lime Requirement, N. Ziadi and T. Sen Tran Ion Supply Rates Using Ion Exchange Resins, P. Qian, J.J. Schoenau, and N. Ziadi Environmental Soil Phosphorus Indices, A.N. Sharpley, P.J.A. Kleinman and J.L. Weld Electrical Conductivity and Soluble Ions, J.J. Miller and D. Curtin SOIL CHEMICAL ANALYSES, Y.K. Soon and W.H. Hendershot Soil Reaction and Exchangeable Acidity, W.H. Hendershot, H. Laland,e and M. Duquette Collection and Characterization of Soil Solutions, J.D. MacDonald, N. Belanger, S. Sauve, F. Courchesne, and W.H. Hendershot Ion Exchange and Exchangeable Cations, W.H. Hendershot, H. Lalande, and M. Duquette Non-Exchangeable Ammonium, Y.K. Soon and B.C. Liang Carbonates, T.B. Goh and A.R. Mermut Total and Organic Carbon, J.O. Skjemstad and J.A. Baldock Total Nitrogen, P.M. Rutherford, W.B. McGill, C.T. Figueiredo, and J.M. Arocena Chemical Characterization of Soil Sulphur, C.G. Kowalenko and M. Grimmett Total and Organic Phosphorus, I.P. O'Halloran and B.J. Cade-Menum Characterization of Available P by Sequential Extraction, H. Tiessen and J.O. Moir Extractable Al, Fe, Mn, and Si, F. Courchesne and M.C. Turmel Determining Nutrient Availability in Forest Soils, N. Belanger, David Pare, and W.H. Hendershot Chemical Properties of Organic Soils, A. Karam SOIL BIOLOGICAL ANALYSES, E. Topp and C.A. Fox Cultural Methods for Soil and Root Associated Microorganisms, J.J. Germida and J.R. de Freitas Arbuscular Mycorrhiza, Y. Dalpe and C. Hamel Root Nodule Bacteria and Symbiotic Nitrogen Fixation, D. Prevost and H. Antoun Microarthropods, J.P Winter and V.M. Behan-Pelletier Nematodes, T.A. Forge and J. Kimpinski Earthworms, M.J. Clapperton, G.H. Baker and C.A. Fox Enchytraeids, S.M. Adl Protozoa, S.M. Adl, D. Acosta-Mercado, and D.H. Lynn Denitrification Techniques for Soils, C.F. Drury, D.D. Myrold, E.G. Beauchamp, and W.D.Reynolds Nitrification Techniques in Soil Systems, C.F. Drury, S.C. Hart, and X.M. Yang Substrate-Induced Respiration and Selective Inhibition as Measures of Microbial Biomass in Soils, V.L. Bailey, J.L. Smith, and H. Bolton Jr. Assessment of Soil Biological Activity, R.P.Beyaert and C.A. Fox Soil ATP, R.P. Voroney, G. Wen, and R.P. Beyaert Lipid-Based Community Analysis, K.E. Dunfield Bacterial Community Analyses by Denaturing Gradient Gel Electrophoresis (DGGE), E. Topp, Y.-C. Tien, and A. Hartmann Indicators of Soil Food Web Properties, T.A. Forge and M. Tenuta SOIL ORGANIC MATTER ANALYSES, E.G. Gregorich and M.H. Beare Carbon Mineralization, D.W. Hopkins Mineralizable Nitrogen, Denis Curtin and C.A. Campbell Physically Uncomplexed Organic Matter, E.G. Gregorich and M.H. Beare Extraction and Characterization of Dissolved Organic Matter, M.H. Chantigny, D.A. Angers, K. Kaiser, and K. Kalbitz Soil Microbial Biomass C, N, P and S, R.P. Voroney, P.C. Brookes, and R.P. Beyaert Carbohydrates, M.H. Chantigny and D.A. Angers Organic Forms of Nitrogen, D.C. Olk Soil Humus Fractions, D.W. Anderson and J.J Schoenau Soil Organic Matter Analysis by Solid-State 13C Nuclear Magnetic Resonance Spectroscopy, M. J. Simpson and C. M. Preston Stable Isotopes in Soil and Environmental Research, B.H. Ellert and L. Rock SOIL PHYSICAL ANALYSES, D.A. Angers and F.J. Larney Particle Size Distribution, D. Kroetsch and C. Wang Soil Shrinkage, C.D. Grant Soil Density and Porosity, X. Hao, B.C. Ball, J.L.B. Culley, M.R. Carter, and G.W. Parkin Soil Consistency: Upper and Lower Plastic Limits, R.A. McBride Compaction and Compressibility, P. Defossez, T. Keller and G. Richard Field Soil Strength, G.C. Topp and D.R. Lapen Air Permeability, C.D. Grant and P.H. Groenevelt Aggregate Stability to Water, D.A. Angers, M.S. Bullock, and G.R. Mehuys Dry Aggregate Size Distribution, F.J. Larney Soil Air, R.E. Farrell and J.A. Elliott Soil-Surface Gas Emissions, P. Rochette and N. Bertrand Bulk Density Measurement in Forest Soils, D.G. Maynard and M.P. Curran Physical Properties of Organic Soils and Growing Media: Particle Size and Degree of Decomposition, L.E. Parent and J. Caron Physical Properties of Organic Soils and Growing Media: Water and Air Storage and Flow Dynamics, J. Caron, D.E. Elrick, J.C. Michel, and R. Naasz SOIL WATER ANALYSES, W.D. Reynolds and G.C. Topp Soil Water Analyses: Principles and Parameters, W.D. Reynolds and G.C. Topp Soil Water Content, G.C. Topp, G.W. Parkin, and Ty P.A Ferre Soil Water Potential, N.J. Livingston and G.C. Topp Soil Water Desorption and Imbibition: Tension and Pressure Techniques, W.D. Reynolds and G.C. Topp Soil Water Desorption and Imbibition: Long Column, W.D. Reynolds and G.C. Topp Soil Water Desorption and Imbibition: Psychrometry, W.D. Reynolds and G.C. Topp Saturated Hydraulic Properties: Laboratory Methods, W.D. Reynolds Saturated Hydraulic Properties: Well Permeameter, W.D. Reynolds Saturated Hydraulic Properties: Ring Infiltrometer, W.D. Reynolds Saturated Hydraulic Properties: Auger-Hole, G.C. Topp Saturated Hydraulic Properties: Piezometer, G.C. Topp Unsaturated Hydraulic Properties: Laboratory Tension Infiltrometer, F.J. Cook Unsaturated Hydraulic Properties: Laboratory Evaporation, O.O. B. Wendroth and N. Wypler Unsaturated Hydraulic Properties: Field Tension Infiltrometer, W.D. Reynolds Unsaturated Hydraulic Properties: Instantaneous Profile, W.D. Reynolds Estimation of Soil Hydraulic Properties, F.J. Cook and H.P. Cresswell Analysis of Soil Variability, B.C. Si, R.G. Kachanoski, and W.D. Reynolds APPENDIX Site Description, G.T. Patterson and J.A. Brierley General Safe Laboratory Operation Procedures, P. St-Georges INDEX

4,631 citations