Author
Michael C. Johnston
Other affiliations: Case Western Reserve University
Bio: Michael C. Johnston is an academic researcher from Universities Space Research Association. The author has contributed to research in topics: Flame spread & Combustion. The author has an hindex of 4, co-authored 8 publications receiving 90 citations. Previous affiliations of Michael C. Johnston include Case Western Reserve University.
Topics: Flame spread, Combustion, Premixed flame, Flammability, Diffusion flame
Papers
More filters
TL;DR: In this article, the upward flame spread experiments were conducted on long thin composite fabric fuels made of 75% cotton and 25% fiberglass of various widths between 2 and 8.8 cm and lengths greater than 1.5 cm.
Abstract: Upward flame spread experiments were conducted on long thin composite fabric fuels made of 75% cotton and 25% fiberglass of various widths between 2 and 8.8 cm and lengths greater than 1.5 m. Symmetric ignition at the bottom edge of the fuel resulted in two sided upward flame growth initially. As flame grew to a critical length (15–30 cm depending on sample width) fluctuation or instability of the flame base was observed. For samples 5 cm or less in width, this instability lead to flame blow off on one side of the sample (can be either side in repeated tests). The remaining flame on the other side would quickly shrink in length and spread all the way to the end of the sample with a constant limiting length and steady spread rate. Flame blow off from the increased buoyancy induced air velocity (at the flame base) with increasing flame length is proposed as the mechanism for this interesting phenomenon. Experimental details and the proposed explanation, including sample width effect, are offered in the paper.
46 citations
01 Jan 2017
TL;DR: In this article, the authors studied flame growth, spread, and quenching extinction over a thin composite cotton-fiberglass fabric blend (referred to as the SIBAL fabric) in low-speed concurrent purely forced flows aboard the International Space Station.
Abstract: Flame growth, spread, and quenching extinction over a thin composite cotton-fiberglass fabric blend (referred to as the SIBAL fabric) were studied in low-speed concurrent purely forced flows aboard the International Space Station. The tests were conducted in a small flow duct within the Microgravity Science Glovebox. The fuel samples measured 1.2 and 2.2 cm wide and 10 cm long. Ambient oxygen was varied from 21% down to 16% molar concentration and flow speed from 55 cm/s down to 1 cm/s. A slow purely forced flow resulted in a small flame, enabling us to observe the entire history of flame development including ignition, flame growth, steady spread (in some cases), and decay at the end of the sample. In addition, by decreasing flow velocity during some of the tests, low-speed flame quenching extinction limits were determined as a function of oxygen percentage. The quenching speeds were found to be between 1 and 5 cm/s with higher extinction speeds in lower oxygen atmospheres. The shape of the quenching boundary supports the prediction by earlier theoretical models. These long duration microgravity experiments provide a rare opportunity for solid fuel combustion since microgravity time in ground-based facilities is generally not sufficient. This is the first time that a low-speed quenching boundary in concurrent spread is mapped in a clean and unambiguous manner. A previously developed three-dimensional transient model is modified to compare with the experiment. The modification includes the use of two-step SIBAL fabric pyrolysis kinetics where the rate constants are determined using Thermo-Gravimetric Analysis data. The model yields good quantitative comparison on the quenching boundary, the flame transient development, and the steady flame spread rates.
35 citations
TL;DR: In this article, a mass balance coupled with a variable oxygen flow tunnel/nozzle was used to measure the burning rate of solid and liquid fuels as a function of ambient oxygen percentage all the way to the extinction limit.
Abstract: A precision mass balance coupled with a variable oxygen flow tunnel/nozzle enables us to measure the burning rate of solid and liquid fuels as a function of ambient oxygen percentage all the way to the extinction limit. Two sample configurations have been studied. The first is a liquid fueled wick flame (ethanol tea lamp). The total burning rate (mass/time) is measured as a function of wick length and oxygen percentage. Near the low oxygen limit, limit-cycle flame oscillation has been found that can last for many minutes to hours. The averaged mass burning rate of the oscillatory flame is about one-half that of the steady flame occurring at slightly higher oxygen. In the second configuration, local burning rate (mass/area/time) of poly(methyl methacrylate) spherical shell samples have been measured in the flame stabilization zone. Each sample has a different amount of heat loss and a different oxygen limit. The critical burning rate at their respective oxygen limits are different. This implies that critical burning rate is not a property of the material alone and it should not be used as the only criterion to judge the extinction or the ignition of materials.
12 citations
TL;DR: In this paper, a microgravity experiment Growth and Extinction Limits is conducted aboard the International Space Station with the emphasis to quantify the effect of the flame heat loss to the thermally thick solid interior by directly measuring the sub-surface temperature gradient.
Abstract: To further our understanding of flammability and quenching limit of thick solid fuels, a microgravity experiment Growth and Extinction Limits is to be conducted aboard the International Space Station with the emphasis to quantify the effect of the flame heat loss to the thermally thick solid interior by directly measuring the sub-surface temperature gradient. A precursor microgravity combustion experiment in the Burning and Suppression of Solids (BASS) project was used to assess the experimental operation and validate the accompanied numerical model. The present paper reports the development of the flame model over a solid sphere in low-speed pure convective flow (less than 100 cm/s). Computed time sequence result of one of the BASS conditions is presented. The combination of gas phase reaction rate, solid internal temperature and surface heat flux distribution reveals the effect of solid in-depth heat-up on flame growth. The experimental observations agree with the trend predicted by the model. For thick solids, flame quenching limit in low speed flow is not only a function of flow speed but also the degree of solid interior heat-up. Flammability limit can have profound implication to the current spacecraft fire protection protocol that requires turning-off of circulation flow in case of detected fire. The present and the follow-up studies will provide more quantitative estimate of the low velocity-quenching limit with heated samples. For the Polymethylmethacrylate spheres investigated, the limit is lower than 2 cm/s in air.
11 citations
TL;DR: In this paper, the same authors conducted concurrent flow flame spread experiments over thermally thin solid fuels in microgravity aboard the International Space Station (ISS) under varying levels of confinement.
Abstract: Concurrent flow flame spread experiments are conducted over thermally thin solid fuels in microgravity aboard the International Space Station (ISS) under varying levels of confinement. Samples of cotton fiberglass blended textile fabric are burned in air flows in a small flow duct. Baffles are placed parallel to the sample sheet, one on each side symmetrically. The distance between the baffles is varied to change the confinement of the burning event. Three different materials of baffles are used to alter the radiative boundary conditions of the space that the flame resides: transparent polycarbonate, black anodized aluminum, and polished aluminum. In all tests, samples are ignited at the upstream leading edge and allowed to burn to completion. The results show that at low flow speeds (
10 citations
Cited by
More filters
TL;DR: Bone, Newitt and Townend as mentioned in this paper published a comprehensive monograph "Flame and Combustion in Gases" by Prof. W. de C. Ellis and W. A. Townend.
Abstract: ELEVEN years ago appeared the comprehensive monograph entitled “Flame and Combustion in Gases” by Prof. W. A. Bone and D. T. A. Townend, followed a year or two later by “Gaseous Combustion at High Pressures” by Bone, Newitt and Townend. Except for a small volume on "Flame"by 0. C. de C. Ellis and W. A. Kirkby (1936), the subject has not since been treated as a whole in English, until the recent appearance of the work by Bernard Lewis and G. von Elbe now under review. Combustion, Flames and Explosions of Gases By Dr. Bernard Lewis Dr. Guenther von Elbe. (The Cambridge Series of Physical Chemistry.) Pp. xiv + 415. (Cambridge: At the University Press, 1938.) 21s. net.
290 citations
01 Jan 2003
TL;DR: In this article, the authors proposed a method for determining the heat release rate of a fire using the reduction of oxygen in fire exhaust gases as an indicator of the amount of heat released by the burning test specimens.
Abstract: Intuitively, the rate of heat release from an unwanted fire is a major indication of the threat of the fire to life and property. This is indeed true, and a reliable measurement of a fire’s heat release rate was a goal of fire researchers at NBS and other fire laboratories at least as early as the 1960s. Historically, heat release measurements of burning materials were based on the temperature rise of ambient air as it passed over the burning object. Because the fraction of heat released by radiant emission varies with the type of material being burned, and because not all the radiant energy contributes to temperature rise of the air, there were large errors in the measurements. Attempts to account for the heat that was not captured by the air required siting numerous thermal sensors about the fire to intercept and detect the additional heat. This approach proved to be tedious, expensive, and susceptible to large errors, particularly when the burning “object” was large, such as a full-sized room filled with flammable furnishings and surface finishes. A novel alternative technique for determining heat release rate was developed at NBS during the 1970s. It had distinct advantages over the customary approach, but its widespread acceptance was hampered by uneasiness in the fire science community concerning potential errors if the technique were used in less-than-ideal circumstances. In 1980 Clayton Huggett, a fire scientist at NBS, published the seminal paper [1] that convinced the fire science community that the new technique was scientifically sound and sufficiently accurate for fire research and testing. The technique is now used worldwide and forms the basis for several national and international standards. The underlying principle of the new heat release rate technique was “discovered” in the early 1970s. Faced with the challenge of measuring the heat release of combustible wall linings during full-scale room fire tests, William Parker, Huggett’s colleague at NBS, investigated an alternative approach based on a simple fact of physics: in addition to the release of heat, the combustion process consumes oxygen. As part of his work on the ASTM E 84 tunnel test, Parker [2] explored the possibility of using a measurement of the reduction of oxygen in fire exhaust gases as an indicator of the amount of heat released by the burning test specimens. Indeed, for well-defined materials with known chemical composition, heat release and oxygen consumption can both be calculated from thermodynamic data. The problem with applying this approach to fires is that in most cases the chemical compositions of modern materials/ composites/mixes that are likely to be involved in real fires are not known. In the process of examining data for complete combustion (combustion under stoichiometric or excess air conditions) of the polymeric materials with which he was working, Parker found that, although the heat released per unit mass of material consumed (i.e., the specific heat of combustion), varied greatly, the amount of heat released per unit volume of oxygen consumed was fairly constant, i.e., within 15 % of the value for methane, 16.4 MJ/m of oxygen consumed. This fortunate circumstance—that the heat release rate per unit volume of oxygen consumed is approximately the same for a range of materials used to construct buildings and furnishings—meant that the heat release rate of materials commonly found in fires could be estimated by capturing all of the products of combustion in an exhaust hood and measuring the flow rate of oxygen in that exhaust flow. The technique was dubbed oxygen consumption calorimetry, notwithstanding the absence of any actual calorimetric (heat) measurements. Later in the decade, Huggett [1] performed a detailed analysis of the critical assumption of constant proportionality of oxygen consumption to heat release. Parker’s assumption was based on enthalpy calculations for the complete combustion of chemical compounds to carbon dioxide, water, and other fully oxidized compounds. Indeed, a literature review by Huggett revealed that Parker’s findings were actually a rediscovery and extension of the work of W. M. Thornton [3], published in 1917, which found that the heat released per unit amount of oxygen consumed during the complete combustion of a large number of organic gases and liquids was fairly constant. Nevertheless, since in real fires and fire experiments the oxygen supply is sometimes limited, incomplete combustion and partially oxidized products can be produced. Huggett’s paper examined in detail the assumption of constant heat release per amount of oxygen consumed under real fire conditions and assessed its effect on the accuracy of heat release rate determinations for fires. Instead of expressing results on a unit volume basis, as Parker did, Huggett expressed results in the more convenient and less ambiguous unit mass of oxygen
258 citations
Glenn Research Center1, Case Western Reserve University2, University of California, Berkeley3, University of Maryland, College Park4, University of Paris5, University of Bremen6, Moscow State University7, Hokkaido University8, European Space Research and Technology Centre9, University of Edinburgh10
TL;DR: In this paper, a large-scale flame spread experiment was conducted inside an orbiting spacecraft to study the effects of microgravity and scale and to address the uncertainty regarding how flames spread when there is no gravity and if the sample size and the experimental duration are, respectively, large enough and long enough to allow for unrestricted growth.
Abstract: For the first time, a large-scale flame spread experiment was conducted inside an orbiting spacecraft to study the effects of microgravity and scale and to address the uncertainty regarding how flames spread when there is no gravity and if the sample size and the experimental duration are, respectively, large enough and long enough to allow for unrestricted growth. Differences between flame spread in purely buoyant and purely forced flows are presented. Prior to these experiments, only samples of small size in small confined volumes had been tested in space. Therefore the first and third flights in the experimental series, called “Saffire,” studied large-scale flame spread over a 94 cm long by 40.6 cm wide cotton-fiberglass fabric. The second flight examined an array of nine smaller samples of various materials each measuring 29 cm long by 5 cm wide. Among them were two of the same cotton-fiberglass fabric used in the large-scale tests and a thick, flat PMMA sample (1-cm thick). The forced airflow was 20–25 cm/s, which is typical of air circulation speeds in a spacecraft. The experiments took place aboard the Cygnus vehicle, a large unmanned resupply spacecraft to the International Space Station (ISS). The experiments were carried out in orbit before the Cygnus vehicle, reloaded with ISS trash, re-entered the Earth's atmosphere and perished. The downloaded test data show that a concurrent (downstream) spreading flame over thin fabrics in microgravity reaches a steady spread rate and a limiting length. The flame over the thick PMMA sample approaches a non-growing, steady state in the 15 min burning duration and has a limiting pyrolysis length. In contrast, upward (concurrent) flame spread at normal gravity on Earth is usually found to be accelerating so that the flame size grows with time. The existence of a flame size limit has important considerations for spacecraft fire safety as it can be used to establish the heat release rate in the vehicle. The findings and the scientific explanations of this series of innovative, novel and unique experiments are presented, analyzed and discussed.
59 citations
TL;DR: In this article, the authors review the recent understandings of the fundamental combustion processes in wire fire over the last three decades and highlight the complex role of the metallic core in the ignition, flame spread, burning, and extinction of wire fire.
Abstract: Electrical wires and cables have been identified as a potential source of fire in residential buildings, nuclear power plants, aircraft, and spacecraft. This work reviews the recent understandings of the fundamental combustion processes in wire fire over the last three decades. Based on experimental studies using ideal laboratory wires, physical-based theories are proposed to describe the unique wire fire phenomena. The review emphasizes the complex role of the metallic core in the ignition, flame spread, burning, and extinction of wire fire. Moreover, the influence of wire configurations and environmental conditions, such as pressure, oxygen level, and gravity, on wire-fire behaviors are discussed in detail. Finally, the challenges and problems in both the fundamental research, using laboratory wires and numerical simulations, and the applied research, using commercial cables and empirical function approaches, are thoroughly discussed to guide future wire fire research and the design of fire-safe wire and cables.
58 citations
TL;DR: In this article, the authors revisited the problem of opposed fire spread under limited and excessive oxygen supply and reviewed various near-limit fire phenomena, as recently observed in flaming, smoldering, and glowing spread under various environment and fuel configurations.
Abstract: Creeping fire spread under opposed airflow is a classic fundamental fire research problem involving heat transfer, fluid dynamics, chemical kinetics, and is strongly dependent on environmental factors. Persistent research over the last 50 years has established a solid framework for different fire-spread processes, but new fire phenomena and recent developments continue to challenge our current understanding and inspire future research areas. In this review, we revisit the problem of opposed fire spread under limited and excessive oxygen supply. Various near-limit fire phenomena, as recently observed in flaming, smoldering, and glowing spread under various environment and fuel configurations, are reviewed in detail. Particularly, aspects of apparent importance, such as transition phenomena and heterogenous chemistry, in near-limit fire spread are highlighted, and valuable problems for future research are suggested.
40 citations