scispace - formally typeset
Search or ask a question
Author

Michael C. Whitlock

Bio: Michael C. Whitlock is an academic researcher from University of British Columbia. The author has contributed to research in topics: Population & Inbreeding. The author has an hindex of 60, co-authored 120 publications receiving 17270 citations. Previous affiliations of Michael C. Whitlock include Vanderbilt University & University of Chicago.


Papers
More filters
Journal ArticleDOI
TL;DR: A critical examination of the neglected biology of mitochondria is carried out and several surprising gaps in the state of the authors' knowledge about this important organelle are pointed out.
Abstract: Mitochondrial DNA (mtDNA) has been used to study molecular ecology and phylogeography for 25 years. Much important information has been gained in this way, but it is time to reflect on the biology of the mitochondrion itself and consider opportunities for evolutionary studies of the organelle itself and its ecology, biochemistry and physiology. This review has four sections. First, we review aspects of the natural history of mitochondria and their DNA to show that it is a unique molecule with specific characteristics that differ from nuclear DNA. We do not attempt to cover the plethora of differences between mitochondrial and nuclear DNA; rather we spotlight differences that can cause significant bias when inferring demographic properties of populations and/or the evolutionary history of species. We focus on recombination, effective population size and mutation rate. Second, we explore some of the difficulties in interpreting phylogeographical data from mtDNA data alone and suggest a broader use of multiple nuclear markers. We argue that mtDNA is not a sufficient marker for phylogeographical studies if the focus of the investigation is the species and not the organelle. We focus on the potential bias caused by introgression. Third, we show that it is not safe to assume a priori that mtDNA evolves as a strictly neutral marker because both direct and indirect selection influence mitochondria. We outline some of the statistical tests of neutrality that can, and should, be applied to mtDNA sequence data prior to making any global statements concerning the history of the organism. We conclude with a critical examination of the neglected biology of mitochondria and point out several surprising gaps in the state of our knowledge about this important organelle. Here we limelight mitochondrial ecology, sexually antagonistic selection, life-history evolution including ageing and disease, and the evolution of mitochondrial inheritance.

2,008 citations

Journal ArticleDOI
01 Feb 1999-Heredity
TL;DR: It is rare that FST can be translated into an accurate estimate of Nm, the number of migrants successfully entering a population per generation, and the mathematical model underlying this translation makes many biologically unrealistic assumptions.
Abstract: The difficulty of directly measuring gene flow has lead to the common use of indirect measures extrapolated from genetic frequency data. These measures are variants of FST, a standardized measure of the genetic variance among populations, and are used to solve for Nm, the number of migrants successfully entering a population per generation. Unfortunately, the mathematical model underlying this translation makes many biologically unrealistic assumptions; real populations are very likely to violate these assumptions, such that there is often limited quantitative information to be gained about dispersal from using gene frequency data. While studies of genetic structure per se are often worthwhile, and FST is an excellent measure of the extent of this population structure, it is rare that FST can be translated into an accurate estimate of Nm.

1,455 citations

Journal ArticleDOI
TL;DR: The results in this note show that, when combining P‐values from multiple tests of the same hypothesis, the weighted Z‐method should be preferred.
Abstract: The most commonly used method in evolutionary biology for combining information across multiple tests of the same null hypothesis is Fisher's combined probability test. This note shows that an alternative method called the weighted Z-test has more power and more precision than does Fisher's test. Furthermore, in contrast to some statements in the literature, the weighted Z-method is superior to the unweighted Z-transform approach. The results in this note show that, when combining P-values from multiple tests of the same hypothesis, the weighted Z-method should be preferred.

768 citations

Journal ArticleDOI
TL;DR: To weigh the risks of AGF against those of maladaptation due to climate change, the authors need to know the species' extent of local adaptation to climate and other environmental factors, as well as its pattern of gene flow.
Abstract: Assisted gene flow (AGF) between populations has the potential to mitigate maladaptation due to climate change. However, AGF may cause outbreeding depression (especially if source and recipient populations have been long isolated) and may disrupt local adaptation to nonclimatic factors. Selection should eliminate extrinsic outbreeding depression due to adaptive differences in large populations, and simulations suggest that, within a few generations, evolution should resolve mild intrinsic outbreeding depression due to epistasis. To weigh the risks of AGF against those of maladaptation due to climate change, we need to know the species' extent of local adaptation to climate and other environmental factors, as well as its pattern of gene flow. AGF should be a powerful tool for managing foundation and resource-producing species with large populations and broad ranges that show signs of historical adaptation to local climatic conditions.

692 citations

Journal ArticleDOI
TL;DR: This work focuses on the first kind of robustness—genetic robustness)—and survey three growing avenues of research: measuring genetic robustness in nature and in the laboratory; understanding the evolution of genetic robusts; and exploring the implications of genetic resilientness for future evolution.
Abstract: Robustness is the invariance of phenotypes in the face of perturbation. The robustness of phenotypes appears at various levels of biological organization, including gene expression, protein folding, metabolic flux, physiological homeostasis, development, and even organismal fitness. The mechanisms underlying robustness are diverse, ranging from thermodynamic stability at the RNA and protein level to behavior at the organismal level. Phenotypes can be robust either against heritable perturbations (e.g., mutations) or nonheritable perturbations (e.g., the weather). Here we primarily focus on the first kind of robustness-genetic robustness-and survey three growing avenues of research: (1) measuring genetic robustness in nature and in the laboratory; (2) understanding the evolution of genetic robustness; and (3) exploring the implications of genetic robustness for future evolution.

681 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: GenAlEx: Genetic Analysis in Excel is a cross-platform package for population genetic analyses that runs within Microsoft Excel that offers analysis of diploid codominant, haploid and binary genetic loci and DNA sequences.
Abstract: Summary: GenAlEx: Genetic Analysis in Excel is a cross-platform package for population genetic analyses that runs within Microsoft Excel. GenAlEx offers analysis of diploid codominant, haploid and binary genetic loci and DNA sequences. Both frequency-based (F-statistics, heterozygosity, HWE, population assignment, relatedness) and distance-based (AMOVA, PCoA, Mantel tests, multivariate spatial autocorrelation) analyses are provided. New features include calculation of new estimators of population structure: G′ST, G′′ST, Jost’s Dest and F′ST through AMOVA, Shannon Information analysis, linkage disequilibrium analysis for biallelic data and novel heterogeneity tests for spatial autocorrelation analysis. Export to more than 30 other data formats is provided. Teaching tutorials and expanded step-by-step output options are included. The comprehensive guide has been fully revised. Availability and implementation: GenAlEx is written in VBA and provided as a Microsoft Excel Add-in (compatible with Excel 2003, 2007, 2010 on PC; Excel 2004, 2011 on Macintosh). GenAlEx, and supporting documentation and tutorials are freely available at: http://biology.anu.edu.au/GenAlEx. Contact: rod.peakall@anu.edu.au

9,564 citations