scispace - formally typeset
Search or ask a question
Author

Michael D. Pierschbacher

Bio: Michael D. Pierschbacher is an academic researcher from National Foundation for Cancer Research. The author has contributed to research in topics: Fibronectin & Vitronectin. The author has an hindex of 50, co-authored 93 publications receiving 23883 citations. Previous affiliations of Michael D. Pierschbacher include Integra Telecom & Scripps Research Institute.


Papers
More filters
Journal ArticleDOI
23 Oct 1987-Science
TL;DR: Together, the adhesion proteins and their receptors constitute a versatile recognition system providing cells with anchorage, traction for migration, and signals for polarity, position, differentiation, and possibly growth.
Abstract: Rapid progress has been made in the understanding of the molecular interactions that result in cell adhesion. Many adhesive proteins present in extracellular matrices and in the blood contain the tripeptide arginine-glycine-aspartic acid (RGD) as their cell recognition site. These proteins include fibronectin, vitronectin, osteopontin, collagens, thrombospondin, fibrinogen, and von Willebrand factor. The RGD sequences of each of the adhesive proteins are recognized by at least one member of a family of structurally related receptors, integrins, which are heterodimeric proteins with two membrane-spanning subunits. Some of these receptors bind to the RGD sequence of a single adhesion protein only, whereas others recognize groups of them. The conformation of the RGD sequence in the individual proteins may be critical to this recognition specificity. On the cytoplasmic side of the plasma membrane, the receptors connect the extracellular matrix to the cytoskeleton. More than ten proved or suspected RGD-containing adhesion-promoting proteins have already been identified, and the integrin family includes at least as many receptors recognizing these proteins. Together, the adhesion proteins and their receptors constitute a versatile recognition system providing cells with anchorage, traction for migration, and signals for polarity, position, differentiation, and possibly growth.

4,821 citations

Journal ArticleDOI
03 May 1984-Nature
TL;DR: The ability of fibronectin to bind cells can be accounted for by the tetrapeptide L-arginyl-glycyl- L-aspartyl-L-serine, a sequence which is part of the cell attachment domain of fibronsectin and present in at least five other proteins.
Abstract: The ability of fibronectin to bind cells can be accounted for by the tetrapeptide L-arginyl-glycyl-L-aspartyl-L-serine, a sequence which is part of the cell attachment domain of fibronectin and present in at least five other proteins. This tetrapeptide may constitute a cellular recognition determinant common to several proteins.

3,574 citations

Journal ArticleDOI
28 Feb 1986-Cell
TL;DR: The RGD sequence as a basic unit of a widespread cellular recognition system is established and the same peptides also inhibit the attachment of fibroblasts to a number of other proteins, including vitronectin.

1,363 citations

Journal ArticleDOI
01 Jan 1985-Cell
TL;DR: Affinity chromatography on wheat germ agglutinin-Sepharose showed that the 140 kd protein is a glycoprotein and, in combination with the fibronectin fragment chromatography, gave highly enriched preparations of the 140Kd protein.

1,094 citations

Journal ArticleDOI
26 Nov 1992-Nature
TL;DR: It is reported here that administration of decorin inhibits the increased production of extracellular matrix and attenuates manifestations of disease, confirming the hypothesis that decorin may eventually prove to be clinically useful in diseases associated with overproduction of TGF-β.
Abstract: The central pathological feature of human kidney disease that leads to kidney failure is the accumulation of extracellular matrix in glomeruli. Overexpression of transforming growth factor-beta (TGF-beta) underlies the accumulation of pathological matrix in experimental glomerulonephritis. Administration of an antibody raised against TGF-beta to glomerulonephritic rats suppresses glomerular matrix production and prevents matrix accumulation in the injured glomeruli. One of the matrix components induced by TGF-beta, the proteoglycan decorin, can bind TGF-beta and neutralize its biological activity, so decorin may be a natural regulator of TGF-beta (refs 3, 4). We tested whether decorin could antagonize the action of TGF-beta in vivo using the experimental glomerulonephritis model. We report here that administration of decorin inhibits the increased production of extracellular matrix and attenuates manifestations of disease, confirming our hypothesis. On the basis of our results, decorin may eventually prove to be clinically useful in diseases associated with overproduction of TGF-beta.

998 citations


Cited by
More filters
Journal ArticleDOI
02 Aug 1990-Nature
TL;DR: Three families of cell-surface molecules regulate the migration of lymphocytes and the interactions of activated cells during immune responses.
Abstract: The adhesive interactions of cells with other cells and with the extracellular matrix are crucial to all developmental processes, but have a central role in the functions of the immune system throughout life Three families of cell-surface molecules regulate the migration of lymphocytes and the interactions of activated cells during immune responses

6,595 citations

Journal ArticleDOI
18 Nov 2005-Science
TL;DR: An understanding of how tissue cells—including fibroblasts, myocytes, neurons, and other cell types—sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels with which elasticity can be tuned to approximate that of tissues.
Abstract: Normal tissue cells are generally not viable when suspended in a fluid and are therefore said to be anchorage dependent. Such cells must adhere to a solid, but a solid can be as rigid as glass or softer than a baby's skin. The behavior of some cells on soft materials is characteristic of important phenotypes; for example, cell growth on soft agar gels is used to identify cancer cells. However, an understanding of how tissue cells-including fibroblasts, myocytes, neurons, and other cell types-sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels (or to other cells) with which elasticity can be tuned to approximate that of tissues. Key roles in molecular pathways are played by adhesion complexes and the actinmyosin cytoskeleton, whose contractile forces are transmitted through transcellular structures. The feedback of local matrix stiffness on cell state likely has important implications for development, differentiation, disease, and regeneration.

5,889 citations

Journal ArticleDOI
23 Oct 1987-Science
TL;DR: Together, the adhesion proteins and their receptors constitute a versatile recognition system providing cells with anchorage, traction for migration, and signals for polarity, position, differentiation, and possibly growth.
Abstract: Rapid progress has been made in the understanding of the molecular interactions that result in cell adhesion. Many adhesive proteins present in extracellular matrices and in the blood contain the tripeptide arginine-glycine-aspartic acid (RGD) as their cell recognition site. These proteins include fibronectin, vitronectin, osteopontin, collagens, thrombospondin, fibrinogen, and von Willebrand factor. The RGD sequences of each of the adhesive proteins are recognized by at least one member of a family of structurally related receptors, integrins, which are heterodimeric proteins with two membrane-spanning subunits. Some of these receptors bind to the RGD sequence of a single adhesion protein only, whereas others recognize groups of them. The conformation of the RGD sequence in the individual proteins may be critical to this recognition specificity. On the cytoplasmic side of the plasma membrane, the receptors connect the extracellular matrix to the cytoskeleton. More than ten proved or suspected RGD-containing adhesion-promoting proteins have already been identified, and the integrin family includes at least as many receptors recognizing these proteins. Together, the adhesion proteins and their receptors constitute a versatile recognition system providing cells with anchorage, traction for migration, and signals for polarity, position, differentiation, and possibly growth.

4,821 citations

Journal ArticleDOI
27 Feb 1987-Cell
TL;DR: This brief review of sequence data from embryogenesis, thrombosis, and lymphocyte help and killing is summarized and attempts to clarify the relationships among the members of this family of cell surface receptors.

4,229 citations