scispace - formally typeset
Search or ask a question
Author

Michael E. Cusick

Other affiliations: New York University
Bio: Michael E. Cusick is an academic researcher from Harvard University. The author has contributed to research in topics: Interactome & Human interactome. The author has an hindex of 38, co-authored 62 publications receiving 24787 citations. Previous affiliations of Michael E. Cusick include New York University.


Papers
More filters
Journal ArticleDOI
20 Oct 2005-Nature
TL;DR: An initial version of a proteome-scale map of human binary protein–protein interactions is described, which increases by ∼70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins.
Abstract: Systematic mapping of protein-protein interactions, or 'interactome' mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein-protein interactions. Using a stringent, high-throughput yeast two-hybrid system, we tested pairwise interactions among the products of approximately 8,100 currently available Gateway-cloned open reading frames and detected approximately 2,800 interactions. This data set, called CCSB-HI1, has a verification rate of approximately 78% as revealed by an independent co-affinity purification assay, and correlates significantly with other biological attributes. The CCSB-HI1 data set increases by approximately 70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins. This work represents an important step towards a systematic and comprehensive human interactome project.

2,936 citations

Journal ArticleDOI
TL;DR: This paper found that essential human genes are likely to encode hub proteins and are expressed widely in most tissues, while the vast majority of disease genes are non-essential and show no tendency to encoding hub proteins, and their expression pattern indicates that they are localized in the functional periphery of the network.
Abstract: A network of disorders and disease genes linked by known disorder-gene associations offers a platform to explore in a single graph-theoretic framework all known phenotype and disease gene associations, indicating the common genetic origin of many diseases. Genes associated with similar disorders show both higher likelihood of physical interactions between their products and higher expression profiling similarity for their transcripts, supporting the existence of distinct disease-specific functional modules. We find that essential human genes are likely to encode hub proteins and are expressed widely in most tissues. This suggests that disease genes also would play a central role in the human interactome. In contrast, we find that the vast majority of disease genes are nonessential and show no tendency to encode hub proteins, and their expression pattern indicates that they are localized in the functional periphery of the network. A selection-based model explains the observed difference between essential and disease genes and also suggests that diseases caused by somatic mutations should not be peripheral, a prediction we confirm for cancer genes.

2,793 citations

Journal Article
TL;DR: It is found that essential human genes are likely to encode hub proteins and are expressed widely in most tissues, suggesting that disease genes also would play a central role in the human interactome, and that diseases caused by somatic mutations should not be peripheral.
Abstract: A network of disorders and disease genes linked by known disorder–gene associations offers a platform to explore in a single graph-theoretic framework all known phenotype and disease gene associations, indicating the common genetic origin of many diseases. Genes associated with similar disorders show both higher likelihood of physical interactions between their products and higher expression profiling similarity for their transcripts, supporting the existence of distinct disease-specific functional modules. We find that essential human genes are likely to encode hub proteins and are expressed widely in most tissues. This suggests that disease genes also would play a central role in the human interactome. In contrast, we find that the vast majority of disease genes are nonessential and show no tendency to encode hub proteins, and their expression pattern indicates that they are localized in the functional periphery of the network. A selection-based model explains the observed difference between essential and disease genes and also suggests that diseases caused by somatic mutations should not be peripheral, a prediction we confirm for cancer genes.

2,687 citations

Journal ArticleDOI
01 Jul 2004-Nature
TL;DR: This work investigated how hubs might contribute to robustness and other cellular properties for protein–protein interactions dynamically regulated both in time and in space, and uncovered two types of hub: ‘party’ hubs, which interact with most of their partners simultaneously, and ‘date’ Hubs, which bind their different partners at different times or locations.
Abstract: In apparently scale-free protein-protein interaction networks, or 'interactome' networks, most proteins interact with few partners, whereas a small but significant proportion of proteins, the 'hubs', interact with many partners. Both biological and non-biological scale-free networks are particularly resistant to random node removal but are extremely sensitive to the targeted removal of hubs. A link between the potential scale-free topology of interactome networks and genetic robustness seems to exist, because knockouts of yeast genes encoding hubs are approximately threefold more likely to confer lethality than those of non-hubs. Here we investigate how hubs might contribute to robustness and other cellular properties for protein-protein interactions dynamically regulated both in time and in space. We uncovered two types of hub: 'party' hubs, which interact with most of their partners simultaneously, and 'date' hubs, which bind their different partners at different times or locations. Both in silico studies of network connectivity and genetic interactions described in vivo support a model of organized modularity in which date hubs organize the proteome, connecting biological processes--or modules--to each other, whereas party hubs function inside modules.

1,778 citations

Journal ArticleDOI
23 Jan 2004-Science
TL;DR: A large fraction of the Caenorhabditis elegans interactome network is mapped, starting with a subset of metazoan-specific proteins, and more than 4000 interactions were identified from high-throughput, yeast two-hybrid screens.
Abstract: To initiate studies on how protein-protein interaction (or "interactome") networks relate to multicellular functions, we have mapped a large fraction of the Caenorhabditis elegans interactome network. Starting with a subset of metazoan-specific proteins, more than 4000 interactions were identified from high-throughput, yeast two-hybrid (HT=Y2H) screens. Independent coaffinity purification assays experimentally validated the overall quality of this Y2H data set. Together with already described Y2H interactions and interologs predicted in silico, the current version of the Worm Interactome (WI5) map contains approximately 5500 interactions. Topological and biological features of this interactome network, as well as its integration with phenome and transcriptome data sets, lead to numerous biological hypotheses.

1,733 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
23 Jan 2015-Science
TL;DR: In this paper, a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level.
Abstract: Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.

9,745 citations

Journal ArticleDOI
Monkol Lek, Konrad J. Karczewski1, Konrad J. Karczewski2, Eric Vallabh Minikel2, Eric Vallabh Minikel1, Kaitlin E. Samocha, Eric Banks2, Timothy Fennell2, Anne H. O’Donnell-Luria2, Anne H. O’Donnell-Luria1, Anne H. O’Donnell-Luria3, James S. Ware, Andrew J. Hill2, Andrew J. Hill1, Andrew J. Hill4, Beryl B. Cummings1, Beryl B. Cummings2, Taru Tukiainen2, Taru Tukiainen1, Daniel P. Birnbaum2, Jack A. Kosmicki, Laramie E. Duncan1, Laramie E. Duncan2, Karol Estrada1, Karol Estrada2, Fengmei Zhao1, Fengmei Zhao2, James Zou2, Emma Pierce-Hoffman2, Emma Pierce-Hoffman1, Joanne Berghout5, David Neil Cooper6, Nicole A. Deflaux7, Mark A. DePristo2, Ron Do, Jason Flannick2, Jason Flannick1, Menachem Fromer, Laura D. Gauthier2, Jackie Goldstein2, Jackie Goldstein1, Namrata Gupta2, Daniel P. Howrigan2, Daniel P. Howrigan1, Adam Kiezun2, Mitja I. Kurki1, Mitja I. Kurki2, Ami Levy Moonshine2, Pradeep Natarajan, Lorena Orozco, Gina M. Peloso1, Gina M. Peloso2, Ryan Poplin2, Manuel A. Rivas2, Valentin Ruano-Rubio2, Samuel A. Rose2, Douglas M. Ruderfer8, Khalid Shakir2, Peter D. Stenson6, Christine Stevens2, Brett Thomas1, Brett Thomas2, Grace Tiao2, María Teresa Tusié-Luna, Ben Weisburd2, Hong-Hee Won9, Dongmei Yu, David Altshuler10, David Altshuler2, Diego Ardissino, Michael Boehnke11, John Danesh12, Stacey Donnelly2, Roberto Elosua, Jose C. Florez1, Jose C. Florez2, Stacey Gabriel2, Gad Getz2, Gad Getz1, Stephen J. Glatt13, Christina M. Hultman14, Sekar Kathiresan, Markku Laakso15, Steven A. McCarroll2, Steven A. McCarroll1, Mark I. McCarthy16, Mark I. McCarthy17, Dermot P.B. McGovern18, Ruth McPherson19, Benjamin M. Neale2, Benjamin M. Neale1, Aarno Palotie, Shaun Purcell8, Danish Saleheen20, Jeremiah M. Scharf, Pamela Sklar, Patrick F. Sullivan14, Patrick F. Sullivan21, Jaakko Tuomilehto22, Ming T. Tsuang23, Hugh Watkins16, Hugh Watkins17, James G. Wilson24, Mark J. Daly1, Mark J. Daly2, Daniel G. MacArthur1, Daniel G. MacArthur2 
18 Aug 2016-Nature
TL;DR: The aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC) provides direct evidence for the presence of widespread mutational recurrence.
Abstract: Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.

8,758 citations

Journal ArticleDOI
TL;DR: This work states that rapid advances in network biology indicate that cellular networks are governed by universal laws and offer a new conceptual framework that could potentially revolutionize the view of biology and disease pathologies in the twenty-first century.
Abstract: A key aim of postgenomic biomedical research is to systematically catalogue all molecules and their interactions within a living cell. There is a clear need to understand how these molecules and the interactions between them determine the function of this enormously complex machinery, both in isolation and when surrounded by other cells. Rapid advances in network biology indicate that cellular networks are governed by universal laws and offer a new conceptual framework that could potentially revolutionize our view of biology and disease pathologies in the twenty-first century.

7,475 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations