scispace - formally typeset
Search or ask a question
Author

Michael E. Zolensky

Bio: Michael E. Zolensky is an academic researcher from Lunar and Planetary Institute. The author has contributed to research in topics: Chondrite & Meteorite. The author has an hindex of 62, co-authored 469 publications receiving 17226 citations. Previous affiliations of Michael E. Zolensky include Empik & Universities Space Research Association.


Papers
More filters
Journal ArticleDOI
15 Dec 2006-Science
TL;DR: The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study, and preliminary examination shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin.
Abstract: The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales.

886 citations

Journal ArticleDOI
15 Dec 2006-Science
TL;DR: The bulk of the comet 81P/Wild 2 samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger ferromagnesian silicates, Fe-Ni sulfides,Fe-Ni metal, and accessory phases.
Abstract: The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk.

644 citations

Journal ArticleDOI
29 Nov 2013-Science
TL;DR: The asteroid impact near the Russian city of Chelyabinsk on 15 February 2013 was the largest airburst on Earth since the 1908 Tunguska event, causing a natural disaster in an area with a population exceeding one million.
Abstract: The asteroid impact near the Russian city of Chelyabinsk on 15 February 2013 was the largest airburst on Earth since the 1908 Tunguska event, causing a natural disaster in an area with a population exceeding one million. Because it occurred in an era with modern consumer electronics, field sensors, and laboratory techniques, unprecedented measurements were made of the impact event and the meteoroid that caused it. Here, we document the account of what happened, as understood now, using comprehensive data obtained from astronomy, planetary science, geophysics, meteorology, meteoritics, and cosmochemistry and from social science surveys. A good understanding of the Chelyabinsk incident provides an opportunity to calibrate the event, with implications for the study of near-Earth objects and developing hazard mitigation strategies for planetary protection.

560 citations

Journal ArticleDOI
15 Dec 2006-Science
TL;DR: The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage and a diverse suite of organic compounds is present and identifiable within the returned samples.
Abstract: Organics found in comet 81P/Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some organics are similar, but not identical, to those in interplanetary dust particles and carbonaceous meteorites. A class of aromatic-poor organic material is also present. The organics are rich in oxygen and nitrogen compared with meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than are meteorites and interplanetary dust particles. The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage. Although the variable extent of modification of these materials by impact capture is not yet fully constrained, a diverse suite of organic compounds is present and identifiable within the returned samples.

547 citations

Journal ArticleDOI
26 Aug 2011-Science
TL;DR: Laboratory analysis of samples returned from an asteroid establishes a direct link between asteroids and meteorites and provides clues to the complex history of the asteroid and its surface.
Abstract: The Hayabusa spacecraft successfully recovered dust particles from the surface of near-Earth asteroid 25143 Itokawa. Synchrotron-radiation x-ray diffraction and transmission and scanning electron microscope analyses indicate that the mineralogy and mineral chemistry of the Itokawa dust particles are identical to those of thermally metamorphosed LL chondrites, consistent with spectroscopic observations made from Earth and by the Hayabusa spacecraft. Our results directly demonstrate that ordinary chondrites, the most abundant meteorites found on Earth, come from S-type asteroids. Mineral chemistry indicates that the majority of regolith surface particles suffered long-term thermal annealing and subsequent impact shock, suggesting that Itokawa is an asteroid made of reassembled pieces of the interior portions of a once larger asteroid.

492 citations


Cited by
More filters
Reference EntryDOI
31 Oct 2001
TL;DR: The American Society for Testing and Materials (ASTM) as mentioned in this paper is an independent organization devoted to the development of standards for testing and materials, and is a member of IEEE 802.11.
Abstract: The American Society for Testing and Materials (ASTM) is an independent organization devoted to the development of standards.

3,792 citations

Journal ArticleDOI
05 Aug 2010-Nature
TL;DR: Foldit is described, a multiplayer online game that engages non-scientists in solving hard prediction problems and shows that top-ranked Foldit players excel at solving challenging structure refinement problems in which substantial backbone rearrangements are necessary to achieve the burial of hydrophobic residues.
Abstract: A natural polypeptide chain can fold into a native protein in microseconds, but predicting such stable three-dimensional structure from any given amino-acid sequence and first physical principles remains a formidable computational challenge. Aiming to recruit human visual and strategic powers to the task, Seth Cooper, David Baker and colleagues turned their 'Rosetta' structure-prediction algorithm into an online multiplayer game called Foldit, in which thousands of non-scientists competed and collaborated to produce a rich set of new algorithms and search strategies for protein structure refinement. The work shows that even computationally complex scientific problems can be effectively crowd-sourced using interactive multiplayer games. Predicting the structure of a folded protein from first principles for any given amino-acid sequence remains a formidable computational challenge. To recruit human abilities to the task, these authors turned their Rosetta structure prediction algorithm into an online multiplayer game in which thousands of non-scientists competed and collaborated to produce new algorithms and search strategies for protein structure refinement. This shows that computationally complex problems can be effectively 'crowd-sourced' through interactive multiplayer games. People exert large amounts of problem-solving effort playing computer games. Simple image- and text-recognition tasks have been successfully ‘crowd-sourced’ through games1,2,3, but it is not clear if more complex scientific problems can be solved with human-directed computing. Protein structure prediction is one such problem: locating the biologically relevant native conformation of a protein is a formidable computational challenge given the very large size of the search space. Here we describe Foldit, a multiplayer online game that engages non-scientists in solving hard prediction problems. Foldit players interact with protein structures using direct manipulation tools and user-friendly versions of algorithms from the Rosetta structure prediction methodology4, while they compete and collaborate to optimize the computed energy. We show that top-ranked Foldit players excel at solving challenging structure refinement problems in which substantial backbone rearrangements are necessary to achieve the burial of hydrophobic residues. Players working collaboratively develop a rich assortment of new strategies and algorithms; unlike computational approaches, they explore not only the conformational space but also the space of possible search strategies. The integration of human visual problem-solving and strategy development capabilities with traditional computational algorithms through interactive multiplayer games is a powerful new approach to solving computationally-limited scientific problems.

1,265 citations

Book ChapterDOI
TL;DR: The composition of the primitive mantle derived by as mentioned in this paper shows that Earth was assembled from material that shows many of the same chemical fractionation processes as chondritic meteorites. But the stable isotope record excludes chondrite meteorites as the ‘building blocks’ of Earth.
Abstract: The composition of the primitive mantle derived here shows that Earth was assembled from material that shows many of the same chemical fractionation processes as chondritic meteorites. These processes occurred at the initial stage of the solar system formation, under conditions thought to be present in the solar nebula. But the stable isotope record excludes chondritic meteorites as the ‘building blocks’ of Earth. Meteorites formed in local environments separated from that part of the inner solar system where much of the material forming the terrestrial planets was sourced.

1,196 citations

Journal ArticleDOI
14 Jul 2011-Nature
TL;DR: Simulation of the early Solar System shows how the inward migration of Jupiter to 1.5 au, and its subsequent outward migration, lead to a planetesimal disk truncated at 1’au; the terrestrial planets then form from this disk over the next 30–50 million years, with an Earth/Mars mass ratio consistent with observations.
Abstract: Jupiter and Saturn formed in a few million years from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only approximately 100,000 years. Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 AU is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 AU, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 AU; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 AU and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.

1,174 citations