scispace - formally typeset
Search or ask a question
Author

Michael F. Egan

Bio: Michael F. Egan is an academic researcher from Merck & Co.. The author has contributed to research in topics: Schizophrenia & Prefrontal cortex. The author has an hindex of 65, co-authored 134 publications receiving 22896 citations. Previous affiliations of Michael F. Egan include Stanley Foundation & University of Hamburg.


Papers
More filters
Journal ArticleDOI
19 Jul 2002-Science
TL;DR: Genetically driven variation in the response of brain regions underlying human emotional behavior is demonstrated and differential excitability of the amygdala to emotional stimuli may contribute to the increased fear and anxiety typically associated with the short SLC6A4 allele.
Abstract: A functional polymorphism in the promoter region of the human serotonin transporter gene (SLC6A4) has been associated with several dimensions of neuroticism and psychopathology, especially anxiety traits, but the predictive value of this genotype against these complex behaviors has been inconsistent. Serotonin [5- hydroxytryptamine, (5-HT)] function influences normal fear as well as pathological anxiety, behaviors critically dependent on the amygdala in animal models and in clinical studies. We now report that individuals with one or two copies of the short allele of the serotonin transporter (5-HTT) promoter polymorphism, which has been associated with reduced 5-HTT expression and function and increased fear and anxiety-related behaviors, exhibit greater amygdala neuronal activity, as assessed by BOLD functional magnetic resonance imaging, in response to fearful stimuli compared with individuals homozygous for the long allele. These results demonstrate genetically driven variation in the response of brain regions underlying human emotional behavior and suggest that differential excitability of the amygdala to emotional stimuli may contribute to the increased fear and anxiety typically associated with the short SLC6A4 allele.

2,248 citations

Journal ArticleDOI
TL;DR: Morphometrical analyses showed reduced gray matter volume in short-allele carriers in limbic regions critical for processing of negative emotion, particularly perigenual cingulate and amygdala, and relative uncoupling of this circuit.
Abstract: Carriers of the short allele of a functional 5¢ promoter polymorphism of the serotonin transporter gene have increased anxietyrelated temperamental traits, increased amygdala reactivity and elevated risk of depression. Here, we used multimodal neuroimaging in a large sample of healthy human subjects to elucidate neural mechanisms underlying this complex genetic association. Morphometrical analyses showed reduced gray matter volume in short-allele carriers in limbic regions critical for processing of negative emotion, particularly perigenual cingulate and amygdala. Functional analysis of those regions during perceptual processing of fearful stimuli demonstrated tight coupling as a feedback circuit implicated in the extinction of negative affect. Short-allele carriers showed relative uncoupling of this circuit. Furthermore, the magnitude of coupling inversely predicted almost 30% of variation in temperamental anxiety. These genotype-related alterations in anatomy and function of an amygdalacingulate feedback circuit critical for emotion regulation implicate a developmental, systems-level mechanism underlying normal emotional reactivity and genetic susceptibility for depression. Depression is among the four leading causes of disability and disease burden throughout the world and is associated with serious medical conditions and mortality across the lifespan 1,2 . The importance of serotonergic neurotransmission for the pathogenesis of depression is suggested clinically by the efficacy of serotonin re-uptake inhibitors (SSRIs), the first-line treatment of depression and most related anxiety disorders 1 and by induction of depression by tryptophan depletion in susceptible individuals 2 . Post-mortem and in vivo studies of the serotonin transporter (5-HTT) and receptors support a role for this neurotransmitter system in depression and anxiety disorders 1 . Further

1,928 citations

Journal ArticleDOI
TL;DR: Val is a predominant factor that determines higher COMT activity in the prefrontal cortex, which presumably leads to lower synaptic dopamine levels and relatively deleterious prefrontal function.
Abstract: Catechol-O-methyltransferase (COMT) is a key enzyme in the elimination of dopamine in the prefrontal cortex of the human brain. Genetic variation in the COMT gene (MIM 116790) has been associated with altered prefrontal cortex function and higher risk for schizophrenia, but the specific alleles and their functional implications have been controversial. We analyzed the effects of several single-nucleotide polymorphisms (SNPs) within COMT on mRNA expression levels (using reverse-transcriptase polymerase chain reaction analysis), protein levels (using Western blot analysis), and enzyme activity (using catechol methylation) in a large sample (n = 108) of postmortem human prefrontal cortex tissue, which predominantly expresses the -membrane-bound isoform. A common coding SNP, Val158Met (rs4680), significantly affected protein abundance and enzyme activity but not mRNA expression levels, suggesting that differences in protein integrity account for the difference in enzyme activity between alleles. A SNP in intron 1 (rs737865) and a SNP in the 3′ flanking region (rs165599)—both of which have been reported to contribute to allelic expression differences and to be associated with schizophrenia as part of a haplotype with Val—had no effect on mRNA expression levels, protein immunoreactivity, or enzyme activity. In lymphocytes from 47 subjects, we confirmed a similar effect on enzyme activity in samples with the Val/Met genotype but no effect in samples with the intron 1 or 3′ SNPs. Separate analyses revealed that the subject's sex, as well as the presence of a SNP in the P2 promoter region (rs2097603), had small effects on COMT enzyme activity. Using site-directed mutagenesis of mouse COMT cDNA, followed by in vitro translation, we found that the conversion of Leu at the homologous position into Met or Val progressively and significantly diminished enzyme activity. Thus, although we cannot exclude a more complex genetic basis for functional effects of COMT, Val is a predominant factor that determines higher COMT activity in the prefrontal cortex, which presumably leads to lower synaptic dopamine levels and relatively deleterious prefrontal function.

1,596 citations

Journal ArticleDOI
TL;DR: The relationship of the BDNF val66met genotype and hippocampal activity during episodic memory processing using blood oxygenation level-dependent functional magnetic resonance imaging and a declarative memory task in healthy individuals suggests that the basic effects of BDNF signaling on hippocampal function in experimental animals are important in humans.
Abstract: BDNF plays a critical role in activity-dependent neuroplasticity underlying learning and memory in the hippocampus. A frequent single nucleotide polymorphism in the targeting region of the human BDNF gene (val66met) has been associated with abnormal intracellular trafficking and regulated secretion of BDNF in cultured hippocampal neurons transfected with the met allele. In addition, the met allele has been associated with abnormal hippocampal neuronal function as well as impaired episodic memory in human subjects, but a direct effect of BDNF alleles on hippocampal processing of memory has not been demonstrated. We studied the relationship of the BDNF val66met genotype and hippocampal activity during episodic memory processing using blood oxygenation level-dependent functional magnetic resonance imaging and a declarative memory task in healthy individuals. Met carriers exhibited relatively diminished hippocampal engagement in comparison with val homozygotes during both encoding and retrieval processes. Remarkably, the interaction between the BDNF val66met genotype and the hippocampal response during encoding accounted for 25% of the total variation in recognition memory performance. These data implicate a specific genetic mechanism for substantial normal variation in human declarative memory and suggest that the basic effects of BDNF signaling on hippocampal function in experimental animals are important in humans.

1,018 citations

Journal ArticleDOI
TL;DR: Basic evidence of an inverted-“U” functional-response curve to increasing dopamine signaling in the prefrontal cortex is extended and individuals with the met/met catechol O-methyltransferase genotype appear to be at increased risk for an adverse response to amphetamine.
Abstract: Monamines subserve many critical roles in the brain, and monoaminergic drugs such as amphetamine have a long history in the treatment of neuropsychiatric disorders and also as a substance of abuse. The clinical effects of amphetamine are quite variable, from positive effects on mood and cognition in some individuals, to negative responses in others, perhaps related to individual variations in monaminergic function and monoamine system genes. We explored the effect of a functional polymorphism (val158-met) in the catechol O-methyltransferase gene, which has been shown to modulate prefrontal dopamine in animals and prefrontal cortical function in humans, on the modulatory actions of amphetamine on the prefrontal cortex. Amphetamine enhanced the efficiency of prefrontal cortex function assayed with functional MRI during a working memory task in subjects with the high enzyme activity val/val genotype, who presumably have relatively less prefrontal synaptic dopamine, at all levels of task difficulty. In contrast, in subjects with the low activity met/met genotype who tend to have superior baseline prefrontal function, the drug had no effect on cortical efficiency at low-to-moderate working memory load and caused deterioration at high working memory load. These data illustrate an application of functional neuroimaging in pharmacogenomics and extend basic evidence of an inverted-“U” functional-response curve to increasing dopamine signaling in the prefrontal cortex. Further, individuals with the met/met catechol O-methyltransferase genotype appear to be at increased risk for an adverse response to amphetamine.

906 citations


Cited by
More filters
Book ChapterDOI
TL;DR: This chapter demonstrates the functional importance of dopamine to working memory function in several ways and demonstrates that a network of brain regions, including the prefrontal cortex, is critical for the active maintenance of internal representations.
Abstract: Publisher Summary This chapter focuses on the modern notion of short-term memory, called working memory. Working memory refers to the temporary maintenance of information that was just experienced or just retrieved from long-term memory but no longer exists in the external environment. These internal representations are short-lived, but can be maintained for longer periods of time through active rehearsal strategies, and can be subjected to various operations that manipulate the information in such a way that makes it useful for goal-directed behavior. Working memory is a system that is critically important in cognition and seems necessary in the course of performing many other cognitive functions, such as reasoning, language comprehension, planning, and spatial processing. This chapter demonstrates the functional importance of dopamine to working memory function in several ways. Elucidation of the cognitive and neural mechanisms underlying human working memory is an important focus of cognitive neuroscience and neurology for much of the past decade. One conclusion that arises from research is that working memory, a faculty that enables temporary storage and manipulation of information in the service of behavioral goals, can be viewed as neither a unitary, nor a dedicated system. Data from numerous neuropsychological and neurophysiological studies in animals and humans demonstrates that a network of brain regions, including the prefrontal cortex, is critical for the active maintenance of internal representations.

10,081 citations

Journal ArticleDOI
18 Jul 2003-Science
TL;DR: Evidence of a gene-by-environment interaction is provided, in which an individual's response to environmental insults is moderated by his or her genetic makeup.
Abstract: In a prospective-longitudinal study of a representative birth cohort, we tested why stressful experiences lead to depression in some people but not in others. A functional polymorphism in the promoter region of the serotonin transporter (5-HT T) gene was found to moderate the influence of stressful life events on depression. Individuals with one or two copies of the short allele of the 5-HT T promoter polymorphism exhibited more depressive symptoms, diagnosable depression, and suicidality in relation to stressful life events than individuals homozygous for the long allele. This epidemiological study thus provides evidence of a gene-by-environment interaction, in which an individual's response to environmental insults is moderated by his or her genetic makeup.

7,210 citations

Journal ArticleDOI
TL;DR: Recent studies examining spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal of functional magnetic resonance imaging as a potentially important and revealing manifestation of spontaneous neuronal activity are reviewed.
Abstract: The majority of functional neuroscience studies have focused on the brain's response to a task or stimulus. However, the brain is very active even in the absence of explicit input or output. In this Article we review recent studies examining spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal of functional magnetic resonance imaging as a potentially important and revealing manifestation of spontaneous neuronal activity. Although several challenges remain, these studies have provided insight into the intrinsic functional architecture of the brain, variability in behaviour and potential physiological correlates of neurological and psychiatric disease.

6,135 citations

Journal ArticleDOI
TL;DR: The authors discuss the etymology and strategy behind the use of endophenotypes in neuropsychiatric research and, more generally, in research on other diseases with complex genetics.
Abstract: Endophenotypes, measurable components unseen by the unaided eye along the pathway between disease and distal genotype, have emerged as an important concept in the study of complex neuropsychiatric diseases. An endophenotype may be neurophysiological, biochemical, endocrinological, neuroanatomical, cognitive, or neuropsychological (including configured self-report data) in nature. Endophenotypes represent simpler clues to genetic underpinnings than the disease syndrome itself, promoting the view that psychiatric diagnoses can be decomposed or deconstructed, which can result in more straightforward-and successful-genetic analysis. However, to be most useful, endophenotypes for psychiatric disorders must meet certain criteria, including association with a candidate gene or gene region, heritability that is inferred from relative risk for the disorder in relatives, and disease association parameters. In addition to furthering genetic analysis, endophenotypes can clarify classification and diagnosis and foster the development of animal models. The authors discuss the etymology and strategy behind the use of endophenotypes in neuropsychiatric research and, more generally, in research on other diseases with complex genetics.

5,321 citations