scispace - formally typeset
Search or ask a question
Author

Michael Frace

Bio: Michael Frace is an academic researcher from Centers for Disease Control and Prevention. The author has contributed to research in topics: Genome & Outbreak. The author has an hindex of 26, co-authored 46 publications receiving 5188 citations.

Papers
More filters
Journal ArticleDOI
30 May 2003-Science
TL;DR: Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closelyrelated to any of the previouslycharacterized coronaviruses.
Abstract: In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses.

2,420 citations

Journal ArticleDOI
TL;DR: Despite its divergence from known influenza A virus, the bat virus is compatible for genetic exchange with human influenza viruses in human cells, suggesting the potential capability for reassortment and contributions to new pandemic or panzootic influenza A viruses.
Abstract: Influenza A virus reservoirs in animals have provided novel genetic elements leading to the emergence of global pandemics in humans. Most influenza A viruses circulate in waterfowl, but those that infect mammalian hosts are thought to pose the greatest risk for zoonotic spread to humans and the generation of pandemic or panzootic viruses. We have identified an influenza A virus from little yellow-shouldered bats captured at two locations in Guatemala. It is significantly divergent from known influenza A viruses. The HA of the bat virus was estimated to have diverged at roughly the same time as the known subtypes of HA and was designated as H17. The neuraminidase (NA) gene is highly divergent from all known influenza NAs, and the internal genes from the bat virus diverged from those of known influenza A viruses before the estimated divergence of the known influenza A internal gene lineages. Attempts to propagate this virus in cell cultures and chicken embryos were unsuccessful, suggesting distinct requirements compared with known influenza viruses. Despite its divergence from known influenza A viruses, the bat virus is compatible for genetic exchange with human influenza viruses in human cells, suggesting the potential capability for reassortment and contributions to new pandemic or panzootic influenza A viruses.

973 citations

Journal ArticleDOI
TL;DR: This investigation documents the isolation and identification of monkeypox virus from humans in the Western Hemisphere and suggests that the prairie dogs had been exposed to at least one species of rodent recently imported into the United States from West Africa.
Abstract: Background During May and June 2003, an outbreak of febrile illness with vesiculopustular eruptions occurred among persons in the midwestern United States who had had contact with ill pet prairie dogs obtained through a common distributor. Zoonotic transmission of a bacterial or viral pathogen was suspected. Methods We reviewed medical records, conducted interviews and examinations, and collected blood and tissue samples for analysis from 11 patients and one prairie dog. Histopathological and electron-microscopical examinations, microbiologic cultures, and molecular assays were performed to identify the etiologic agent. Results The initial Wisconsin cases evaluated in this outbreak occurred in five males and six females ranging in age from 3 to 43 years. All patients reported having direct contact with ill prairie dogs before experiencing a febrile illness with skin eruptions. We found immunohistochemical or ultrastructural evidence of poxvirus infection in skin-lesion tissue from four patients. Monkeypox...

769 citations

Journal ArticleDOI
TL;DR: This work combines sequencing data from second- and third-generation DNA sequencing technologies to assemble the two-chromosome genome of a recent Haitian cholera outbreak strain into two nearly finished contigs at >99.9% accuracy and provides the next generation of rapid microbial identification and full-genome assembly.
Abstract: The multikilobase reads that can be produced by single-molecule sequencing technologies may span complex, repetitive genomic regions but have high error rates. Bashir et al. use these reads to organize contigs assembled from accurate, short-read data, facilitating the analysis of clinically important regions of an outbreak strain of cholera. Advances in DNA sequencing technology have improved our ability to characterize most genomic diversity. However, accurate resolution of large structural events is challenging because of the short read lengths of second-generation technologies. Third-generation sequencing technologies, which can yield longer multikilobase reads, have the potential to address limitations associated with genome assembly. Here we combine sequencing data from second- and third-generation DNA sequencing technologies to assemble the two-chromosome genome of a recent Haitian cholera outbreak strain into two nearly finished contigs at >99.9% accuracy. Complex regions with clinically relevant structure were completely resolved. In separate control assemblies on experimental and simulated data for the canonical N16961 cholera reference strain, we obtained 14 scaffolds of greater than 1 kb for the experimental data and 8 scaffolds of greater than 1 kb for the simulated data, which allowed us to correct several errors in contigs assembled from the short-read data alone. This work provides a blueprint for the next generation of rapid microbial identification and full-genome assembly.

208 citations

Journal ArticleDOI
TL;DR: A strain from Haiti shares genetic ancestry with those from Asia and Africa, and is thought to be the first of its kind in the world.
Abstract: Cholera was absent from the island of Hispaniola at least a century before an outbreak that began in Haiti in the fall of 2010. Pulsed-fi eld gel electrophoresis (PFGE) analysis of clinical isolates from the Haiti outbreak and recent global travelers returning to the United States showed indistinguishable PFGE fi ngerprints. To better explore the genetic ancestry of the Haiti outbreak strain, we acquired 23 whole-genome Vibrio cholerae sequences: 9 isolates obtained in Haiti or the Dominican Republic, 12 PFGE pattern-matched isolates linked to Asia or Africa, and 2 nonmatched outliers from the Western Hemisphere. Phylogenies for whole-genome sequences and core genome single-nucleotide polymorphisms showed that the Haiti outbreak strain is genetically related to strains originating in India and Cameroon. However, because no identical genetic match was found among sequenced contemporary isolates, a defi nitive genetic origin for the outbreak in Haiti remains speculative.

147 citations


Cited by
More filters
Journal ArticleDOI
27 Nov 2003-Nature
TL;DR: It is found that a soluble form of ACE2, but not of the related enzyme ACE1, blocked association of the S1 domain with Vero E6 cells, indicating that ACE2 is a functional receptor for SARS-CoV.
Abstract: Spike (S) proteins of coronaviruses, including the coronavirus that causes severe acute respiratory syndrome (SARS), associate with cellular receptors to mediate infection of their target cells Here we identify a metallopeptidase, angiotensin-converting enzyme 2 (ACE2), isolated from SARS coronavirus (SARS-CoV)-permissive Vero E6 cells, that efficiently binds the S1 domain of the SARS-CoV S protein We found that a soluble form of ACE2, but not of the related enzyme ACE1, blocked association of the S1 domain with Vero E6 cells 293T cells transfected with ACE2, but not those transfected with human immunodeficiency virus-1 receptors, formed multinucleated syncytia with cells expressing S protein Furthermore, SARS-CoV replicated efficiently on ACE2-transfected but not mock-transfected 293T cells Finally, anti-ACE2 but not anti-ACE1 antibody blocked viral replication on Vero E6 cells Together our data indicate that ACE2 is a functional receptor for SARS-CoV

5,149 citations

Journal ArticleDOI
TL;DR: The clinical picture was remarkably similar to that of the severe acute respiratory syndrome (SARS) outbreak in 2003 and reminds us that animal coronaviruses can cause severe disease in humans.
Abstract: A previously unknown coronavirus was isolated from the sputum of a 60-year-old man who presented with acute pneumonia and subsequent renal failure with a fatal outcome in Saudi Arabia. The virus (called HCoV-EMC) replicated readily in cell culture, producing cytopathic effects of rounding, detachment, and syncytium formation. The virus represents a novel betacoronavirus species. The closest known relatives are bat coronaviruses HKU4 and HKU5. Here, the clinical data, virus isolation, and molecular identification are presented. The clinical picture was remarkably similar to that of the severe acute respiratory syndrome (SARS) outbreak in 2003 and reminds us that animal coronaviruses can cause severe disease in humans.

4,809 citations

Journal ArticleDOI
TL;DR: This work presents a hierarchical genome-assembly process (HGAP) for high-quality de novo microbial genome assemblies using only a single, long-insert shotgun DNA library in conjunction with Single Molecule, Real-Time (SMRT) DNA sequencing.
Abstract: We present a hierarchical genome-assembly process (HGAP) for high-quality de novo microbial genome assemblies using only a single, long-insert shotgun DNA library in conjunction with Single Molecule, Real-Time (SMRT) DNA sequencing. Our method uses the longest reads as seeds to recruit all other reads for construction of highly accurate preassembled reads through a directed acyclic graph-based consensus procedure, which we follow with assembly using off-the-shelf long-read assemblers. In contrast to hybrid approaches, HGAP does not require highly accurate raw reads for error correction. We demonstrate efficient genome assembly for several microorganisms using as few as three SMRT Cell zero-mode waveguide arrays of sequencing and for BACs using just one SMRT Cell. Long repeat regions can be successfully resolved with this workflow. We also describe a consensus algorithm that incorporates SMRT sequencing primary quality values to produce de novo genome sequence exceeding 99.999% accuracy.

3,647 citations

Journal ArticleDOI
TL;DR: A molecular explanation why SARS-CoV infections cause severe and often lethal lung failure and suggest a rational therapy for SARS and possibly other respiratory disease viruses is provided.
Abstract: During several months of 2003, a newly identified illness termed severe acute respiratory syndrome (SARS) spread rapidly through the world. A new coronavirus (SARS-CoV) was identified as the SARS pathogen, which triggered severe pneumonia and acute, often lethal, lung failure. Moreover, among infected individuals influenza such as the Spanish flu and the emergence of new respiratory disease viruses have caused high lethality resulting from acute lung failure. In cell lines, angiotensin-converting enzyme 2 (ACE2) has been identified as a potential SARS-CoV receptor. The high lethality of SARS-CoV infections, its enormous economic and social impact, fears of renewed outbreaks as well as the potential misuse of such viruses as biologic weapons make it paramount to understand the pathogenesis of SARS-CoV. Here we provide the first genetic proof that ACE2 is a crucial SARS-CoV receptor in vivo. SARS-CoV infections and the Spike protein of the SARS-CoV reduce ACE2 expression. Notably, injection of SARS-CoV Spike into mice worsens acute lung failure in vivo that can be attenuated by blocking the renin-angiotensin pathway. These results provide a molecular explanation why SARS-CoV infections cause severe and often lethal lung failure and suggest a rational therapy for SARS and possibly other respiratory disease viruses.

2,983 citations

Journal ArticleDOI
TL;DR: The ability of hospital ventilation systems to filter Aspergillus and other fungi following a building implosion and the impact of bedside design and furnishing on nosocomial infections are investigated.

2,632 citations