scispace - formally typeset
Search or ask a question
Author

Michael G. Rosenfeld

Bio: Michael G. Rosenfeld is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Transcription factor & Regulation of gene expression. The author has an hindex of 178, co-authored 504 publications receiving 107707 citations. Previous affiliations of Michael G. Rosenfeld include Tokai University & Salk Institute for Biological Studies.


Papers
More filters
Journal ArticleDOI
TL;DR: Using microarray-based profiling of isogenic prostate cancer xenograft models, it is found that a modest increase in androgen receptor mRNA was the only change consistently associated with the development of resistance to antiandrogen therapy.
Abstract: Using microarray-based profiling of isogenic prostate cancer xenograft models, we found that a modest increase in androgen receptor mRNA was the only change consistently associated with the development of resistance to antiandrogen therapy. This increase in androgen receptor mRNA and protein was both necessary and sufficient to convert prostate cancer growth from a hormone-sensitive to a hormone-refractory stage, and was dependent on a functional ligand-binding domain. Androgen receptor antagonists showed agonistic activity in cells with increased androgen receptor levels; this antagonist-agonist conversion was associated with alterations in the recruitment of coactivators and corepressors to the promoters of androgen receptor target genes. Increased levels of androgen receptor confer resistance to antiandrogens by amplifying signal output from low levels of residual ligand, and by altering the normal response to antagonists. These findings provide insight toward the design of new antiandrogens.

2,320 citations

Journal ArticleDOI
14 Jul 1983-Nature
TL;DR: The approach described here permits the application of recombinant DNA technology to analyses of complex neurobiological systems in the absence of prior structural or biological information.
Abstract: Alternative processing of the RNA transcribed from the calcitonin gene appears to result in the production of a messenger RNA in neural tissue distinct from that in thyroidal 'C' cells The thyroid mRNA encodes a precursor to the hormone calcitonin whereas that in neural tissues generates a novel neuropeptide, referred to as calcitonin gene-related peptide (CGRP) The distribution of CGRP-producing cells and pathways in the brain and other tissues suggests functions for the peptide in nociception, ingestive behaviour and modulation of the autonomic and endocrine systems The approach described here permits the application of recombinant DNA technology to analyses of complex neurobiological systems in the absence of prior structural or biological information

2,243 citations

Journal ArticleDOI
TL;DR: Based on their importance in biology and medicine, as well as the relatively simple mechanism of regulation, NR represent one of the most intensively studied and best-understood classes of transcription factors at the molecular level.
Abstract: Nuclear receptors (NR) comprise a family of transcription factors that regulate gene expression in a liganddependent manner. Members of the NR superfamily include receptors for steroid hormones, such as estrogens (ER) and glucocorticoids (GR), receptors for nonsteroidal ligands, such as thyroid hormones (TR) and retinoic acid (RAR), as well as receptors that bind diverse products of lipid metabolism, such as fatty acids and prostaglandins (for review, see Beato et al. 1995; Chambon 1995; Mangelsdorf and Evans 1995). The NR superfamily also includes a large number of so-called orphan receptors for which regulatory ligands have not been identified (Mangelsdorf and Evans 1995). Although many orphan receptors are likely to be regulated by small-molecular-weight ligands, other mechanisms of regulation, such as phosphorylation (Hammer et al. 1999; Tremblay et al. 1999) have also proven to be of importance. Remarkably, the sequence of the Caenorhabditis elegans genome has revealed the presence of >200 members of the NR family, suggesting a critical role of these proteins in environmental adaptation (Sluder et al. 1999). Although mammalian genomes are unlikely to contain such a large complement of these factors, >24 distinct classes of NR have been identified in humans, and these factors exert diverse roles in the regulation of growth, development, and homeostasis. Based on their importance in biology and medicine, as well as the relatively simple mechanism of regulation, NR represent one of the most intensively studied and best-understood classes of transcription factors at the molecular level. Members of the NR family regulate transcription by several mechanisms (Fig. 1). Nuclear receptors can activate or repress target genes by binding directly to DNA response elements as homoor heterodimers or by binding to other classes of DNA-bound transcription factors. A subset of NRs, including TR and RAR, can actively repress target genes in the presence or absence of ligand binding, and many NR have been demonstrated to inhibit transcription in a ligand-dependent manner by antagonizing the transcriptional activities of other classes of transcription factors. These activities have been linked to interactions with general classes of molecules that appear to serve coactivator or corepressor function. In this review, we will discuss recent progress concerning the molecular mechanisms by which NR cofactor interactions serve to activate or repress transcription.

2,200 citations

Journal ArticleDOI
03 May 1996-Cell
TL;DR: It is suggested that CBP/p300 serves as an integrator of multiple signal transduction pathways within the nucleus, in addition to distinct coactivators for function of nuclear receptors, CREB, and AP-1.

2,184 citations

Journal ArticleDOI
05 Oct 1995-Nature
TL;DR: A nuclear receptor co-repressor (N-CoR) of relative molecular mass 270K has been identified which mediates ligand-independent inhibition of gene transcription by these receptors, suggesting that the molecular mechanisms of repression by thyroid-hormone and retinoic-acid receptors are analogous to the co- repressor-dependent transcriptional inhibitory mechanisms of yeast and Drosophila.
Abstract: Thyroid-hormone and retinoic-acid receptors exert their regulatory functions by acting as both activators and repressors of gene expression. A nuclear receptor co-repressor (N-CoR) of relative molecular mass 270K has been identified which mediates ligand-independent inhibition of gene transcription by these receptors, suggesting that the molecular mechanisms of repression by thyroid-hormone and retinoic-acid receptors are analogous to the co-repressor-dependent transcriptional inhibitory mechanisms of yeast and Drosophila.

2,069 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: EdgeR as mentioned in this paper is a Bioconductor software package for examining differential expression of replicated count data, which uses an overdispersed Poisson model to account for both biological and technical variability and empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference.
Abstract: Summary: It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. Availability: The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org).

29,413 citations

Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.
Abstract: The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

13,548 citations

Journal ArticleDOI
23 Feb 2007-Cell
TL;DR: The surface of nucleosomes is studded with a multiplicity of modifications that can dictate the higher-order chromatin structure in which DNA is packaged and can orchestrate the ordered recruitment of enzyme complexes to manipulate DNA.

10,046 citations

Journal ArticleDOI
24 Jul 2008-Nature
TL;DR: The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
Abstract: The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.

9,282 citations

Journal ArticleDOI
14 Dec 2006-Nature
TL;DR: Dysfunction of the immune response and metabolic regulation interface can be viewed as a central homeostatic mechanism, dysfunction of which can lead to a cluster of chronic metabolic disorders, particularly obesity, type 2 diabetes and cardiovascular disease.
Abstract: Metabolic and immune systems are among the most fundamental requirements for survival. Many metabolic and immune response pathways or nutrient- and pathogen-sensing systems have been evolutionarily conserved throughout species. As a result, immune response and metabolic regulation are highly integrated and the proper function of each is dependent on the other. This interface can be viewed as a central homeostatic mechanism, dysfunction of which can lead to a cluster of chronic metabolic disorders, particularly obesity, type 2 diabetes and cardiovascular disease. Collectively, these diseases constitute the greatest current threat to global human health and welfare.

7,536 citations