scispace - formally typeset
Search or ask a question
Author

Michael G. Ziegler

Bio: Michael G. Ziegler is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Blood pressure & Catecholamine. The author has an hindex of 78, co-authored 455 publications receiving 22509 citations. Previous affiliations of Michael G. Ziegler include San Diego State University & University of Massachusetts Medical School.


Papers
More filters
Journal ArticleDOI
TL;DR: Levels of norepinephrine in human plasma have been determined by a radioenzymatic technique sufficiently sensitive to measure 0.014 ng NE per ml plasma by evaluating sympathetic neuronal function based on the increments in plasma NE produced by postural change and a standard amount of exertion.

590 citations

Journal ArticleDOI
Francine E. Garrett-Bakelman1, Francine E. Garrett-Bakelman2, Manjula Darshi3, Stefan J. Green4, Ruben C. Gur5, Ling Lin6, Brandon R. Macias, Miles J. McKenna7, Cem Meydan1, Tejaswini Mishra6, Jad Nasrini5, Brian D. Piening8, Brian D. Piening6, Lindsay F. Rizzardi9, Kumar Sharma3, Jamila H. Siamwala10, Jamila H. Siamwala11, Lynn Taylor7, Martha Hotz Vitaterna12, Maryam Afkarian13, Ebrahim Afshinnekoo1, Sara Ahadi6, Aditya Ambati6, Maneesh Arya, Daniela Bezdan1, Colin M. Callahan9, Songjie Chen6, Augustine M.K. Choi1, George E. Chlipala4, Kévin Contrepois6, Marisa Covington, Brian Crucian, Immaculata De Vivo14, David F. Dinges5, Douglas J. Ebert, Jason I. Feinberg9, Jorge Gandara1, Kerry George, John Goutsias9, George Grills1, Alan R. Hargens10, Martina Heer15, Martina Heer16, Ryan P. Hillary6, Andrew N. Hoofnagle17, Vivian Hook10, Garrett Jenkinson9, Garrett Jenkinson18, Peng Jiang12, Ali Keshavarzian19, Steven S. Laurie, Brittany Lee-McMullen6, Sarah B. Lumpkins, Matthew MacKay1, Mark Maienschein-Cline4, Ari Melnick1, Tyler M. Moore5, Kiichi Nakahira1, Hemal H. Patel10, Robert Pietrzyk, Varsha Rao6, Rintaro Saito10, Rintaro Saito20, Denis Salins6, Jan M. Schilling10, Dorothy D. Sears10, Caroline Sheridan1, Michael B. Stenger, Rakel Tryggvadottir9, Alexander E. Urban6, Tomas Vaisar17, Benjamin Van Espen10, Jing Zhang6, Michael G. Ziegler10, Sara R. Zwart21, John B. Charles, Craig E. Kundrot, Graham B. I. Scott22, Susan M. Bailey7, Mathias Basner5, Andrew P. Feinberg9, Stuart M. C. Lee, Christopher E. Mason, Emmanuel Mignot6, Brinda K. Rana10, Scott M. Smith, Michael Snyder6, Fred W. Turek12, Fred W. Turek11 
12 Apr 2019-Science
TL;DR: Given that the majority of the biological and human health variables remained stable, or returned to baseline, after a 340-day space mission, these data suggest that human health can be mostly sustained over this duration of spaceflight.
Abstract: INTRODUCTION To date, 559 humans have been flown into space, but long-duration (>300 days) missions are rare (n = 8 total). Long-duration missions that will take humans to Mars and beyond are planned by public and private entities for the 2020s and 2030s; therefore, comprehensive studies are needed now to assess the impact of long-duration spaceflight on the human body, brain, and overall physiology. The space environment is made harsh and challenging by multiple factors, including confinement, isolation, and exposure to environmental stressors such as microgravity, radiation, and noise. The selection of one of a pair of monozygotic (identical) twin astronauts for NASA’s first 1-year mission enabled us to compare the impact of the spaceflight environment on one twin to the simultaneous impact of the Earth environment on a genetically matched subject. RATIONALE The known impacts of the spaceflight environment on human health and performance, physiology, and cellular and molecular processes are numerous and include bone density loss, effects on cognitive performance, microbial shifts, and alterations in gene regulation. However, previous studies collected very limited data, did not integrate simultaneous effects on multiple systems and data types in the same subject, or were restricted to 6-month missions. Measurement of the same variables in an astronaut on a year-long mission and in his Earth-bound twin indicated the biological measures that might be used to determine the effects of spaceflight. Presented here is an integrated longitudinal, multidimensional description of the effects of a 340-day mission onboard the International Space Station. RESULTS Physiological, telomeric, transcriptomic, epigenetic, proteomic, metabolomic, immune, microbiomic, cardiovascular, vision-related, and cognitive data were collected over 25 months. Some biological functions were not significantly affected by spaceflight, including the immune response (T cell receptor repertoire) to the first test of a vaccination in flight. However, significant changes in multiple data types were observed in association with the spaceflight period; the majority of these eventually returned to a preflight state within the time period of the study. These included changes in telomere length, gene regulation measured in both epigenetic and transcriptional data, gut microbiome composition, body weight, carotid artery dimensions, subfoveal choroidal thickness and peripapillary total retinal thickness, and serum metabolites. In addition, some factors were significantly affected by the stress of returning to Earth, including inflammation cytokines and immune response gene networks, as well as cognitive performance. For a few measures, persistent changes were observed even after 6 months on Earth, including some genes’ expression levels, increased DNA damage from chromosomal inversions, increased numbers of short telomeres, and attenuated cognitive function. CONCLUSION Given that the majority of the biological and human health variables remained stable, or returned to baseline, after a 340-day space mission, these data suggest that human health can be mostly sustained over this duration of spaceflight. The persistence of the molecular changes (e.g., gene expression) and the extrapolation of the identified risk factors for longer missions (>1 year) remain estimates and should be demonstrated with these measures in future astronauts. Finally, changes described in this study highlight pathways and mechanisms that may be vulnerable to spaceflight and may require safeguards for longer space missions; thus, they serve as a guide for targeted countermeasures or monitoring during future missions.

538 citations

Journal ArticleDOI
TL;DR: It was concluded that pontine noradrenergic cell groups are the sole source of noradRenergic terminals in the spinal cord.

471 citations

Journal ArticleDOI
27 May 1976-Nature
TL;DR: Extending the study to teenage and elderly subjects revealed that basal levels of plasma NA correlate with age and that the increase in plasma NA in response to stress is similarly related to age.
Abstract: WE measured plasma noradrenaline (NA) levels in about 20 individuals who were to serve as normal control subjects and noted that older subjects tended to have higher NA levels. Extending the study to teenage and elderly subjects revealed that basal levels of plasma NA correlate with age and that the increase in plasma NA in response to stress is similarly related to age. There is considerable evidence that sensitivity to NA and NA metabolism change with increasing age. In rabbits and cats the threshold for cardiovascular response to low levels of NA decreases with old age1. In ageing rats uptake of NA into the heart is greater than in young animals2 and there is a diminished inotropic response of aged rat myocardium to a fixed concentration of NA (ref. 3). Cardiac monoamine oxidase activity increases severalfold during the life span of a rat while dopa decarboxylase decreases during the first year2. In man, propranalol, which blocks β-adrenergic receptors, reduces heart rate and cardiac output during exercise, but this effect is considerably smaller in older subjects4. The response of heart rate to hypoxia and hypercapnia is attenuated in older men5.

457 citations

Journal ArticleDOI
TL;DR: Findings are consistent with other pathological and pharmacologic observations suggesting that patients with central-nervous-system disease are unable to activate appropriately an otherwise intact sympathetic nervous system, whereas in patients without signs of central-Nervous -system disease the deficit affects peripheral sympathetic nerves.
Abstract: We sought to elucidate further the neurologic defect of idiopathic orthostatic hypotension, which appears to represent two distinct clinical entities. While recumbent, patients with multiple central-nervous-system defects, as well as peripheral autonomic nervous dysfunction, have normal plasma levels of norepinephrine that fail to increase normally after standing or exertion (P less than 0.001 by t-test as compared to controls). While recumbent, patients with peripheral autonomic insufficiency without signs of central-nervous-system defects have low levels of plasma norepinephrine (P less than 0.001) that also fail to increase normally after standing or exercising (P less than 0.001). Both groups have low levels of plasma dopamine-beta-hydroxylase (P less than 0.02). These findings are consistent with other pathological and pharmacologic observations suggesting that patients with central-nervous-system disease are unable to activate appropriately an otherwise intact sympathetic nervous system, whereas in patients without signs of central-nervous-system disease the deficit affects peripheral sympathetic nerves.

355 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: This review considers recent findings regarding GC action and generates criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stress-response or, as an additional category, is preparative for a subsequent stressor.
Abstract: The secretion of glucocorticoids (GCs) is a classic endocrine response to stress. Despite that, it remains controversial as to what purpose GCs serve at such times. One view, stretching back to the time of Hans Selye, posits that GCs help mediate the ongoing or pending stress response, either via basal levels of GCs permitting other facets of the stress response to emerge efficaciously, and/or by stress levels of GCs actively stimulating the stress response. In contrast, a revisionist viewpoint posits that GCs suppress the stress response, preventing it from being pathologically overactivated. In this review, we consider recent findings regarding GC action and, based on them, generate criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stressresponse or, as an additional category, is preparative for a subsequent stressor. We apply these GC actions to the realms of cardiovascular function, fluid volume and hemorrhage, immunity and inflammation, metabolism, neurobiology, and reproductive physiology. We find that GC actions fall into markedly different categories, depending on the physiological endpoint in question, with evidence for mediating effects in some cases, and suppressive or preparative in others. We then attempt to assimilate these heterogeneous GC actions into a physiological whole. (Endocrine Reviews 21: 55‐ 89, 2000)

6,707 citations