scispace - formally typeset
Search or ask a question
Author

Michael Graf

Bio: Michael Graf is an academic researcher from Boston College. The author has contributed to research in topics: Superconductivity & Antiferromagnetism. The author has an hindex of 37, co-authored 169 publications receiving 4373 citations. Previous affiliations of Michael Graf include Center for Integrated Protein Science Munich & Oeschger Centre for Climate Change Research.


Papers
More filters
Journal ArticleDOI
11 Aug 2016-Nature
TL;DR: A large, osmotically induced current is observed produced from a salt gradient with an estimated power density of up to 106 watts per square metre—a current that can be attributed mainly to the atomically thin membrane of MoS2, thus demonstrating a self-powered nanosystem.
Abstract: Osmotic power generation is a promising renewable energy source. This study demonstrates the use of single-layer molybdenum disulfide (MoS2) nanopores as osmotic nanogenerators. The transport of water through a membrane scales inversely with membrane thickness, so atomically thin materials should provide the ideal medium to host the nanopores in an osmotic power generator. Aleksandra Radenovic and colleagues produced nanopores in two-dimensional MoS2 and, using a salt gradient across a single nanopore, generated a power output per area orders of magnitude greater than that previously reported for nanotubes. They also show that a chemical potential gradient across a single nanopore in MoS2 can generate enough power to operate a single-layer MoS2 transistor.

758 citations

Journal ArticleDOI
TL;DR: This work identifies and characterize multiple dominant and subdominant SARS-CoV-2 HLA class I and HLA-DR peptides as potential T cell epitopes in COVID-19 convalescent and unexposed individuals to enable identification of heterologous and post-infectious T cell immunity and facilitate development of diagnostic, preventive and therapeutic measures for CO VID-19.
Abstract: T cell immunity is central for the control of viral infections. To characterize T cell immunity, but also for the development of vaccines, identification of exact viral T cell epitopes is fundamental. Here we identify and characterize multiple dominant and subdominant SARS-CoV-2 HLA class I and HLA-DR peptides as potential T cell epitopes in COVID-19 convalescent and unexposed individuals. SARS-CoV-2-specific peptides enabled detection of post-infectious T cell immunity, even in seronegative convalescent individuals. Cross-reactive SARS-CoV-2 peptides revealed pre-existing T cell responses in 81% of unexposed individuals and validated similarity with common cold coronaviruses, providing a functional basis for heterologous immunity in SARS-CoV-2 infection. Diversity of SARS-CoV-2 T cell responses was associated with mild symptoms of COVID-19, providing evidence that immunity requires recognition of multiple epitopes. Together, the proposed SARS-CoV-2 T cell epitopes enable identification of heterologous and post-infectious T cell immunity and facilitate development of diagnostic, preventive and therapeutic measures for COVID-19.

430 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the observation of bulk superconductivity in single crystals of the two-dimensional kagome metal (KV, Rb, Cs) with magnetic susceptibility, resistivity, and heat capacity measurements.
Abstract: Here we report the observation of bulk superconductivity in single crystals of the two-dimensional kagome metal ${\mathrm{KV}}_{3}{\mathrm{Sb}}_{5}$. Magnetic susceptibility, resistivity, and heat capacity measurements reveal superconductivity below ${T}_{c}=0.93\phantom{\rule{0.28em}{0ex}}\mathrm{K}$, and density functional theory (DFT) calculations further characterize the normal state as a ${\mathbb{Z}}_{2}$ topological metal. Our results demonstrate that the recent observation of superconductivity within the related kagome metal ${\mathrm{CsV}}_{3}{\mathrm{Sb}}_{5}$ is likely a common feature across the $A{\mathrm{V}}_{3}{\mathrm{Sb}}_{5}$ ($A$: K, Rb, Cs) family of compounds and establishes them as a rich arena for studying the interplay between bulk superconductivity, topological surface states, and likely electronic density wave order in an exfoliable kagome lattice.

242 citations

Journal ArticleDOI
TL;DR: In this article, the authors exploited the electrochemical activity of molybdenum disulfide (MoS2) and developed a convenient and scalable method to controllably make nanopores in single-layer MoS2 with subnanometer precision using electrochemical reaction (ECR).
Abstract: Ultrathin nanopore membranes based on 2D materials have demonstrated ultimate resolution toward DNA sequencing. Among them, molybdenum disulfide (MoS2) shows long-term stability as well as superior sensitivity enabling high throughput performance. The traditional method of fabricating nanopores with nanometer precision is based on the use of focused electron beams in transmission electron microscope (TEM). This nanopore fabrication process is time-consuming, expensive, not scalable, and hard to control below 1 nm. Here, we exploited the electrochemical activity of MoS2 and developed a convenient and scalable method to controllably make nanopores in single-layer MoS2 with subnanometer precision using electrochemical reaction (ECR). The electrochemical reaction on the surface of single-layer MoS2 is initiated at the location of defects or single atom vacancy, followed by the successive removals of individual atoms or unit cells from single-layer MoS2 lattice and finally formation of a nanopore. Step-like features in the ionic current through the growing nanopore provide direct feedback on the nanopore size inferred from a widely used conductance vs pore size model. Furthermore, DNA translocations can be detected in situ when as-fabricated MoS2 nanopores are used. The atomic resolution and accessibility of this approach paves the way for mass production of nanopores in 2D membranes for potential solid-state nanopore sequencing.

200 citations

Journal ArticleDOI
TL;DR: These findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further the understanding of transport through biological ion channels.
Abstract: Ionic Coulomb blockade—the ionic counterpart of the electronic Coulomb blockade—has been observed in a single subnanometre MoS2 pore junction.

189 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the methods used to synthesize transition metal dichalcogenides (TMDCs) and their properties with particular attention to their charge density wave, superconductive and topological phases, along with their applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.
Abstract: Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin–orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties. Two-dimensional transition metal dichalcogenides (TMDCs) exhibit attractive electronic and mechanical properties. In this Review, the charge density wave, superconductive and topological phases of TMCDs are discussed, along with their synthesis and applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.

3,436 citations

Journal Article
TL;DR: This volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of the instrument and its ancillary tools are simply and well presented.
Abstract: I read this book the same weekend that the Packers took on the Rams, and the experience of the latter event, obviously, colored my judgment. Although I abhor anything that smacks of being a handbook (like, \"How to Earn a Merit Badge in Neurosurgery\") because too many volumes in biomedical science already evince a boyscout-like approach, I must confess that parts of this volume are fast, scholarly, and significant, with certain reservations. I like parts of this well-illustrated book because Dr. Sj6strand, without so stating, develops certain subjects on technique in relation to the acquisition of judgment and sophistication. And this is important! So, given that the author (like all of us) is somewhat deficient in some areas, and biased in others, the book is still valuable if the uninitiated reader swallows it in a general fashion, realizing full well that what will be required from the reader is a modulation to fit his vision, propreception, adaptation and response, and the kind of problem he is undertaking. A major deficiency of this book is revealed by comparison of its use of physics and of chemistry to provide understanding and background for the application of high resolution electron microscopy to problems in biology. Since the volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of The instrument and its ancillary tools are simply and well presented. The potential use of chemical or cytochemical information as it relates to biological fine structure , however, is quite deficient. I wonder when even sophisticated morphol-ogists will consider fixation a reaction and not a technique; only then will the fundamentals become self-evident and predictable and this sine qua flon will become less mystical. Staining reactions (the most inadequate chapter) ought to be something more than a technique to selectively enhance contrast of morphological elements; it ought to give the structural addresses of some of the chemical residents of cell components. Is it pertinent that auto-radiography gets singled out for more complete coverage than other significant aspects of cytochemistry by a high resolution microscopist, when it has a built-in minimal error of 1,000 A in standard practice? I don't mean to blind-side (in strict football terminology) Dr. Sj6strand's efforts for what is \"routinely used in our laboratory\"; what is done is usually well done. It's just that …

3,197 citations