scispace - formally typeset
Search or ask a question
Author

Michael Grätzel

Bio: Michael Grätzel is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Dye-sensitized solar cell & Perovskite (structure). The author has an hindex of 248, co-authored 1423 publications receiving 303599 citations. Previous affiliations of Michael Grätzel include University of California, Berkeley & Siemens Energy Sector.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a microwave-based approach was used to synthesize anatase titania nano-structures for photo-anode in dye-sensitized solar cells, achieving a modest yet appreciable efficiency of 6.5% under the illumination of AM 1.5 G one sun.
Abstract: Rapid and facile synthesis of similar to 7 nm and similar to 100-400 nm nano-structures of anatase titania is achieved by exploiting the chemical nature of solvents through a microwave based approach. After using these nanostructures as a photoanode in dye-sensitized solar cells, a modest yet appreciable efficiency of 6.5% was achieved under the illumination of AM 1.5 G one sun (100 mW cm(-2)).

80 citations

Journal ArticleDOI
TL;DR: The tetraalkylammonium salts of the weakly coordinating fluorinated alkoxyaluminates serve as model compounds for undisturbed anions and their vibrational spectra--together with simulated spectra based on quantum chemical DFT calculations--were used for the clear assignment of the anion bands.
Abstract: In this study, we investigated the tetraalkylammonium salts of the weakly coordinating fluorinated alkoxyaluminates [pftb](-) ([Al(O(C(CF3)(3))(4)](-)) [hfip](-) ([Al(OC(H)-(CF3)(2))(4)](-)) and [hftb](-) ([Al(OC(CH3)(-) (CF3)(2))(4)](-)) in order to obtain information on their undisturbed spectral and structural properties, as well as to study their electrochemical behavior (i.e., conductivities in non-polar solvents and electrochemical windows). Several of the compounds qualify as ionic liquids with melting points as low as 42 degrees C for [NBU4](+)[hfip](-). Simple and quantitative metathesis reactions most yielding these materials in high purity were developed. These [NR4](+) salts serve as model compounds for undisturbed anions and their vibrational spectra-together with simulated spectra based on quantum chemical DFT calculations-were used for the clear assignment of the anion bands. Besides, the ion volumes of the anions (V-ion(-)([pftb](-))=0.736 nm(3), V-ion([hftb](-)) = 0.658 nm(3), V-ion([hfip](-))=0.577 nm(3)) and their decomposition pathways in the mass spectrometric measurements have been established. The salts are highly soluble in non-polar solvents (up to 1.09 mol L-1 are possible for [NBu4](+)[hftb](-) in CH2Cl2 and 0.41 mol L-1 for [NBu4](+)[hfip](-) in CHCl3) and show higher molar conductivities if compared to [NBu4](+)[PF6](-). The electrochemical windows of CH2Cl2, CH3CN and 1,2-F2C6H4 using the [NBu4](+) aluminate electrolytes are up to +0.5 V/-0.7 V larger than those using the standard [NBu4](+)[PF6](-).

80 citations

Journal ArticleDOI
TL;DR: This study identifies the presence of mixed crystalline aggregates composed of perovskite and lead iodide during intercalation and structural reorganization and finds that the Avrami models best represent them.
Abstract: Sequential deposition has been extensively used for the fabrication of perovskite solar cells. Nevertheless, fundamental aspects of the kinetics of methylammonium lead iodide perovskite formation remain obscure. We scrutinize the individual stages of the reaction and investigate the crystallization of the lead iodide film, which occurs before the intercalation of methylammonium iodide commences. Our study identifies the presence of mixed crystalline aggregates composed of perovskite and lead iodide during intercalation and structural reorganization. Furthermore, Ostwald ripening occurs in the film for reaction times beyond the point of conversion to perovskite. Using cross-sectional confocal laser scanning microscopy for the first time, we reveal that lead iodide in the over-layer and at the bottom of the mesoporous layer converts first. We identify unreacted lead iodide trapped in the mesoporous layer for samples of complete conversion. We acquire kinetic data by varying different parameters and find that the Avrami models best represent them. The model facilitates the rapid estimation of the reaction time for complete conversion for a variety of reaction conditions, thereby ascertaining a major factor previously determined by extensive experimentation. This comprehensive picture of the sequential deposition is essential for control over the perovskite film quality, which determines solar cell efficiency. Our results provide key insights to realize high-quality perovskite films for optoelectronic applications.

80 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a Web of Science Record created on 2006-02-21, modified on 2017-05-12, with the purpose of improving the quality of the Web.
Abstract: Reference LPI-ARTICLE-1999-019doi:10.1149/1.1391698View record in Web of Science Record created on 2006-02-21, modified on 2017-05-12

80 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
24 Oct 1991-Nature
TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Abstract: THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

26,457 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The slow pace of hazardous waste remediation at military installations around the world is causing a serious delay in conversion of many of these facilities to civilian uses as discussed by the authors, which is a serious problem.
Abstract: The civilian, commercial, and defense sectors of most advanced industrialized nations are faced with a tremendous set of environmental problems related to the remediation of hazardous wastes, contaminated groundwaters, and the control of toxic air contaminants. For example, the slow pace of hazardous waste remediation at military installations around the world is causing a serious delay in conversion of many of these facilities to civilian uses. Over the last 10 years problems related to hazardous waste remediation have emerged as a high national and international priority.

17,188 citations