scispace - formally typeset
Search or ask a question
Author

Michael Grätzel

Bio: Michael Grätzel is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Dye-sensitized solar cell & Perovskite (structure). The author has an hindex of 248, co-authored 1423 publications receiving 303599 citations. Previous affiliations of Michael Grätzel include University of California, Berkeley & Siemens Energy Sector.


Papers
More filters
Journal ArticleDOI
TL;DR: Based on the selective resonance enhancement of the intensities of the Raman bands of the ligand biq by excitation within the lowest energy absorption band, the lowest excited states in the dinuclear complexes have been assigned unambiguously to Ru → biq charge transfer as discussed by the authors.
Abstract: In the ligand-bridged complexes [(bipy)2Ru(dpp)Ru(biq)2]4+ and [(biq)2Ru(dpp)Ru(biq)2]4+[dpp = 2,3-bis(2′-pyridyl)pyrazine, bipy = 2,2′-bipyridine and biq = 2,2′-biquinoline], the photophysical and redox properties do not allow differentiation of the low-energy charge-transfer transitions Ru → biq and Ru → dpp. Based on the selective resonance enhancement of the intensities of the Raman bands of the ligand biq by excitation within the lowest-energy absorption band, the lowest excited states in the dinuclear complexes have been assigned unambiguously to Ru → biq charge transfer.

15 citations

Journal ArticleDOI
TL;DR: In this article, the spatial distribution of light in solid-state dye-sensitized solar cells (DSCs) was quantified using the optical transfer-matrix method.
Abstract: We use the optical transfer-matrix method to quantify the spatial distribution of light in solid-state dye-sensitized solar cells (DSCs), employing material optical properties measured experimentally in the accompanying article (Part I) as input into the optical model. By comparing the optical modeling results with experimental photovoltaic action spectra for solid-state DSCs containing either a ruthenium-based dye or an organic indoline-based dye, we show that the internal quantum efficiency (IQE) of the devices for both dyes is around 60% for almost all wavelengths, substantially lower than the almost 100% IQE measured for liquid DSCs, indicating substantial electrical losses in solid-state DSCs that can account for much of the current factor-of-two difference between the efficiencies of liquid and solid-state DSCs. The model calculations also demonstrate significant optical losses due to absorption by 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene (spiro-OMeTAD) and TiO2 in the blue and to a lesser extent throughout the visible. As a consequence, the more absorptive organic dye, D149, should outperform the standard ruthenium complex sensitizer, Z907, for all device thicknesses, underlining the potential benefits of high extinction coefficient dyes optimized for solid-state DSC operation. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3204985]

15 citations

Journal ArticleDOI
01 May 2017
TL;DR: An unsymmetrical, push-pull porphyrazine derivative bearing an isoindole-4-carboxylic acid moiety was synthesized and incorporated in a dye-sensitized solar cell as discussed by the authors.
Abstract: An unsymmetrical, push-pull porphyrazine derivative bearing an isoindole-4-carboxylic acid moiety (TT112) is synthesized and incorporated in a dye-sensitized solar cell (DSSC). The device, which constitutes the first example of a porphyrazine-sensitized solar cell, exhibits a maximum power conversion efficiency of 3.4 %.

15 citations

Proceedings ArticleDOI
27 Mar 2008
TL;DR: In this paper, a dye-sensitized photochemical solar cell is described, which is a photoelectrochemical device that is based on the dye sensitization of thin (10-30 μm) films of TiO2 nanoparticles in contact with a non-aqueous liquid electrolyte.
Abstract: A new type of photovoltaic cell is described. It is a photoelectrochemical device that is based on the dye sensitization of thin (10–30 μm) films of TiO2 nanoparticles in contact with a non-aqueous liquid electrolyte. The cell is very simple to fabricate and, in principle, its color can be tuned through the visible spectrum, ranging from being completely transparent to black by changing the absorption characteristics of the dye; the photovoltage of the cell is not determined by the threshold energy for light absorption (bandgap) as in conventional photovoltaic cells based on solid-state semiconductors. The highest present efficiency of the dye-sensitized photochemical solar cell is about 11%. The cell has the potential to be a low-cost photovoltaic option. Unique applications include photovoltaic power windows and photoelectrochromic windows.

15 citations

Journal ArticleDOI
TL;DR: In this paper, a new material, water stable haloplumbate (TBA)PbI3, is proposed for interfacial modification, which is formed on the perovskite surface in-situ by tetra-butylammonium iodide(TBAI) treatment.
Abstract: The commercialization of perovskite solar cells is mainly limited by their operational stability. Interlayer modification by thin interface materials between the perovskite and the charge transport layers is one of the most effective methods to promote the efficiency and stability of perovskite devices. However, the commonly used interlayer materials do not meet all the demands, including good film quality, excellent stability, and passivation capability without interfering with the charge transport. In this work, we propose a new material, water stable haloplumbate [TBA]PbI3 for interfacial modification, which is formed on the perovskite surface in-situ by tetra-butylammonium iodide (TBAI) treatment. Benefiting from its passivation effect and robustness, the modified devices result in a power conversion efficiency of 22.90% with excellent environmental and operational stability.

15 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
24 Oct 1991-Nature
TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Abstract: THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

26,457 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The slow pace of hazardous waste remediation at military installations around the world is causing a serious delay in conversion of many of these facilities to civilian uses as discussed by the authors, which is a serious problem.
Abstract: The civilian, commercial, and defense sectors of most advanced industrialized nations are faced with a tremendous set of environmental problems related to the remediation of hazardous wastes, contaminated groundwaters, and the control of toxic air contaminants. For example, the slow pace of hazardous waste remediation at military installations around the world is causing a serious delay in conversion of many of these facilities to civilian uses. Over the last 10 years problems related to hazardous waste remediation have emerged as a high national and international priority.

17,188 citations