scispace - formally typeset
Search or ask a question
Author

Michael Grätzel

Bio: Michael Grätzel is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Dye-sensitized solar cell & Perovskite (structure). The author has an hindex of 248, co-authored 1423 publications receiving 303599 citations. Previous affiliations of Michael Grätzel include University of California, Berkeley & Siemens Energy Sector.


Papers
More filters
Journal ArticleDOI
TL;DR: This study represents one of the first demonstrations of extended, stable operation of perovskite photovoltaics, whose large open-circuit voltage is shown to be particularly suited for this process.
Abstract: Artificial photosynthesis, mimicking nature in its efforts to store solar energy, has received considerable attention from the research community. Most of these attempts target the production of H2 as a fuel and our group recently demonstrated solar-to-hydrogen conversion at 12.3% efficiency. Here, in an effort to take this approach closer to real photosynthesis, which is based on the conversion of CO2, we demonstrate the efficient reduction of CO2 to carbon monoxide driven solely by simulated sunlight using water as the electron source. Employing series-connected perovskite photovoltaics and high-performance catalyst electrodes, we reach a solar-to-CO efficiency exceeding 6.5%, which represents a new benchmark in sunlight-driven CO2 conversion. Considering hydrogen as a secondary product, an efficiency exceeding 7% is observed. Furthermore, this study represents one of the first demonstrations of extended, stable operation of perovskite photovoltaics, whose large open-circuit voltage is shown to be particularly suited for this process.

290 citations

Journal ArticleDOI
TL;DR: Triazatruxene-based compounds are demonstrated as a new class of HTM for the fabrication of highly efficient perovskite solar cells and remarkable power conversion efficiency was achieved using 5,10,15-trihexyl-3,8,13-tris(4-methoxyphenyl)-10, 15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazole with compos
Abstract: Four center symmetrical star-shaped hole transporting materials (HTMs) comprising planar triazatruxene core and electron-rich methoxy-engineered side arms have been synthesized and successfully employed in (FAPbI3)0.85(MAPbBr3)0.15 perovskite solar cells. These HTMs are obtained from relatively cheap starting materials by adopting facile preparation procedure, without using expensive and complicated purification techniques. Developed compounds have suitable highest occupied molecular orbitals (HOMO) with respect to the valence band level of the perovskite, and time-resolved photoluminescence indicates that hole injection from the valence band of perovskite into the HOMO of triazatruxene-based HTMs is relatively more efficient as compared to that of well-studied spiro-OMeTAD. Remarkable power conversion efficiency over 18% was achieved using 5,10,15-trihexyl-3,8,13-tris(4-methoxyphenyl)-10,15-dihydro-5H-diindolo[3,2-a:3′,2′-c]carbazole (KR131) with compositive perovskite absorber. This result demonstrates ...

286 citations

Journal ArticleDOI
TL;DR: In this paper, the contribution of each layer is analyzed by means of electrochemical impedance spectroscopy, with the aim of obtaining a general understanding of surface and interface modifications and their influence on the hematite photoanode performance.
Abstract: Recent research on photoanodes for photoelectrochemical water splitting has introduced the concept of under- and overlayers for the activation of ultrathin hematite films. Their effects on the photocatalytic behavior were clearly shown; however, the mechanism is thus far not fully understood. Herein, the contribution of each layer is analyzed by means of electrochemical impedance spectroscopy, with the aim of obtaining a general understanding of surface and interface modifications and their influence on the hematite photoanode performance. This study shows that doping of the hematite from the underlayer and surface passivation from annealing treatments and an overlayer are key parameters to consider for the design of more efficient iron oxide electrodes. Understanding the contribution of these layers, a new design for ultrathin hematite films employing a combination of a gallium oxide overlayer with thin niobium oxide and silicon oxide underlayers is shown to achieve a photocurrent onset potential for the photoelectrochemical oxidation of water more negative than 750 mV versus the reversible hydrogen electrode (RHE) at pH 13.6, utilizing Co-Pi as a water oxidation catalyst. It is demonstrated that multilayer hematite thin film photoanodes are a strategy to reduce the overpotential for this material, thereby facilitating more efficient tandem cells.

285 citations

Journal ArticleDOI
TL;DR: This Minireview highlights the current state of the art and future directions of solid-state dye-sensitized solar cell technology.
Abstract: The dye-sensitized solar cell, developed in the 1990s, is a non-conventional solar technology that has attracted much attention owing to its stability, low cost, and device efficiency. Power-conversion efficiencies of over 11% have been achieved for devices that contain liquid electrolytes, whereas solid-state devices that do not require a liquid electrolyte display an overall efficiency of 5%. Improvement of the efficiency of solid-state dye-sensitized solar cells requires optimization of their various components, such as the hole-transport material, sensitizer, mesoporous TiO2 film, and the blocking layer. This Minireview highlights the current state of the art and future directions of solid-state dye-sensitized solar cell technology.

285 citations

Journal ArticleDOI
TL;DR: In this paper, a dye-sensitized bifacial solar cell was proposed to provide high photo-energy conversion efficiency (∼6%) for incident light striking its front or rear surfaces.
Abstract: Solar energy is a promising solution to global energy-related problems because it is clean, inexhaustible and readily available. However, the deployment of conventional photovoltaic cells based on silicon is still limited by cost, so alternative, more cost-effective approaches are sought. Here we report a bifacial dye-sensitized solar cell structure that provides high photo-energy conversion efficiency (∼6%) for incident light striking its front or rear surfaces. The design comprises a highly stable ruthenium dye (Z907Na) in combination with an ionic-liquid electrolyte and a porous TiO2 layer. The inclusion of a SiO2 layer between the electrodes to prevent generation of unwanted back current and optimization of the thickness of the TiO2 layer are responsible for the enhanced performance. Low-cost, efficient solar cells are sought as an alternative to silicon photovoltaics. Here a dye-based bifacial solar cell that is capable of efficient generation of electricity for light incident on either its front or rear face is demonstrated.

283 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
24 Oct 1991-Nature
TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Abstract: THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

26,457 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The slow pace of hazardous waste remediation at military installations around the world is causing a serious delay in conversion of many of these facilities to civilian uses as discussed by the authors, which is a serious problem.
Abstract: The civilian, commercial, and defense sectors of most advanced industrialized nations are faced with a tremendous set of environmental problems related to the remediation of hazardous wastes, contaminated groundwaters, and the control of toxic air contaminants. For example, the slow pace of hazardous waste remediation at military installations around the world is causing a serious delay in conversion of many of these facilities to civilian uses. Over the last 10 years problems related to hazardous waste remediation have emerged as a high national and international priority.

17,188 citations