scispace - formally typeset
M

Michael Grätzel

Researcher at École Polytechnique Fédérale de Lausanne

Publications -  1476
Citations -  335642

Michael Grätzel is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Dye-sensitized solar cell & Perovskite (structure). The author has an hindex of 248, co-authored 1423 publications receiving 303599 citations. Previous affiliations of Michael Grätzel include University of California, Berkeley & Siemens Energy Sector.

Papers
More filters
Journal ArticleDOI

The light and shade of perovskite solar cells

TL;DR: The rise of metal halide perovskites as light harvesters has stunned the photovoltaic community and questions on the control of the performance of perovSKite solar cells and on its characterization are being addressed.
Journal ArticleDOI

Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.

TL;DR: The simple mesoscopic CH(3)NH( 3)PbI(3)/TiO(2) heterojunction solar cell shows impressive photovoltaic performance, with short-circuit photocurrent J(sc)= 16.1 mA/cm(2), open-circuits photovvoltage V(oc) = 0.631 V, and a fill factor FF =0.57.
Journal ArticleDOI

Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10

TL;DR: In this article, the authors proposed a fabrication technique for dye-sensitized solar cells having a conversion efficiency of global air mass 1.5, 1000 W/m(2) solar light to electric power over 10%.
Journal ArticleDOI

Efficient luminescent solar cells based on tailored mixed-cation perovskites

TL;DR: A new metal halide perovskite photovoltaic cell that exhibits both very high solar-to-electric power-conversion efficiency and intense electroluminescence is reported on.
Journal ArticleDOI

Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%

TL;DR: In this article, an approach to prepare perovskite films of high electronic quality by using poly(methyl methacrylate) (PMMA) as a template to control nucleation and crystal growth is presented.