scispace - formally typeset
Search or ask a question
Author

Michael H. Goldbaum

Bio: Michael H. Goldbaum is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Glaucoma & Visual field. The author has an hindex of 39, co-authored 146 publications receiving 11228 citations. Previous affiliations of Michael H. Goldbaum include University of Illinois at Urbana–Champaign & United States Department of Veterans Affairs.


Papers
More filters
Journal ArticleDOI
TL;DR: An automated method to locate and outline blood vessels in images of the ocular fundus that uses local and global vessel features cooperatively to segment the vessel network is described.
Abstract: Describes an automated method to locate and outline blood vessels in images of the ocular fundus. Such a tool should prove useful to eye care specialists for purposes of patient screening, treatment evaluation, and clinical study. The authors' method differs from previously known methods in that it uses local and global vessel features cooperatively to segment the vessel network. The authors evaluate their method using hand-labeled ground truth segmentations of 20 images. A plot of the operating characteristic shows that the authors' method reduces false positives by as much as 15 times over basic thresholding of a matched filter response (MFR), at up to a 75% true positive rate. For a baseline, they also compared the ground truth against a second hand-labeling, yielding a 90% true positive and a 4% false positive detection rate, on average. These numbers suggest there is still room for a 15% true positive rate improvement, with the same false positive rate, over the authors' method. They are making all their images and hand labelings publicly available for interested researchers to use in evaluating related methods.

2,206 citations

Journal ArticleDOI
TL;DR: The concept of matched filter detection of signals is used to detect piecewise linear segments of blood vessels in these images and the results are compared to those obtained with other methods.
Abstract: Blood vessels usually have poor local contrast, and the application of existing edge detection algorithms yield results which are not satisfactory. An operator for feature extraction based on the optical and spatial properties of objects to be recognized is introduced. The gray-level profile of the cross section of a blood vessel is approximated by a Gaussian-shaped curve. The concept of matched filter detection of signals is used to detect piecewise linear segments of blood vessels in these images. Twelve different templates that are used to search for vessel segments along all possible directions are constructed. Various issues related to the implementation of these matched filters are discussed. The results are compared to those obtained with other methods. >

1,692 citations

Journal ArticleDOI
TL;DR: An automated method to locate the optic nerve in images of the ocular fundus using a novel algorithm the authors call fuzzy convergence to determine the origination of the blood vessel network is described.
Abstract: We describe an automated method to locate the optic nerve in images of the ocular fundus. Our method uses a novel algorithm we call fuzzy convergence to determine the origination of the blood vessel network. We evaluate our method using 31 images of healthy retinas and 50 images of diseased retinas, containing such diverse symptoms as tortuous vessels, choroidal neovascularization, and hemorrhages that completely obscure the actual nerve. On this difficult data set, our method achieved 89% correct detection. We also compare our method against three simpler methods, demonstrating the performance improvement. All our images and data are freely available for other researchers to use in evaluating related methods.

756 citations

Journal ArticleDOI
TL;DR: A measurable number of elderly patients with findings suggestive of neovascularized AMD and serosanguineous macular manifestations will instead have PCV, which is more commonly seen in the peripapillary area, without associated drusen, and in nonwhite patients.
Abstract: Objective To determine the nature and frequency of polypoidal choroidal vasculopathy (PCV) in a series of patients suspected of having neovascularized age-related macular degeneration (AMD). Methods A prospective analysis of 167 consecutive, newly diagnosed patients aged 55 years or older with presumed neovascularized AMD was performed. All patients were examined with fundus biomicroscopy as well as fluorescein and indocyanine green angiography. Results Choroidal neovascularization secondary to AMD was diagnosed in 154 (92.2%) of 167 patients; 13 (7.8%) patients had PCV. The patients affected by PCV were younger than those with AMD ( P = .01). Peripapillary choroidal neovascularization was seen in 3 (1.9%) of 154 patients with AMD and 3 (23.1%) of 13 patients with PCV ( P = .006). Significant drusen were present in 63 (70%) of 90 fellow eyes with unilateral AMD compared with only 1 (16.7%) of 6 eyes with PCV ( P = .02). Only 5 patients with AMD (3.2%) were nonwhite compared with 3 patients with PCV (23.1%) ( P = .02). Conclusions A measurable number of elderly patients with findings suggestive of neovascularized AMD and serosanguineous macular manifestations will instead have PCV. Polypoidal choroidal vasculopathy can occur in any sex or race, but is more commonly seen in the peripapillary area, without associated drusen, and in nonwhite patients. It is important to differentiate AMD from PCV because there are significant differences in the demographic risk profile, natural course, visual prognosis, and management of these patients.

390 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: A method is presented for automated segmentation of vessels in two-dimensional color images of the retina based on extraction of image ridges, which coincide approximately with vessel centerlines, which is compared with two recently published rule-based methods.
Abstract: A method is presented for automated segmentation of vessels in two-dimensional color images of the retina. This method can be used in computer analyses of retinal images, e.g., in automated screening for diabetic retinopathy. The system is based on extraction of image ridges, which coincide approximately with vessel centerlines. The ridges are used to compose primitives in the form of line elements. With the line elements an image is partitioned into patches by assigning each image pixel to the closest line element. Every line element constitutes a local coordinate frame for its corresponding patch. For every pixel, feature vectors are computed that make use of properties of the patches and the line elements. The feature vectors are classified using a kNN-classifier and sequential forward feature selection. The algorithm was tested on a database consisting of 40 manually labeled images. The method achieves an area under the receiver operating characteristic curve of 0.952. The method is compared with two recently published rule-based methods of Hoover et al. and Jiang et al. . The results show that our method is significantly better than the two rule-based methods (p<0.01). The accuracy of our method is 0.944 versus 0.947 for a second observer.

3,416 citations

Journal ArticleDOI
TL;DR: This paper argues that the field of explainable artificial intelligence should build on existing research, and reviews relevant papers from philosophy, cognitive psychology/science, and social psychology, which study these topics, and draws out some important findings.

2,585 citations

Journal ArticleDOI
Eric J. Topol1
TL;DR: Over time, marked improvements in accuracy, productivity, and workflow will likely be actualized, but whether that will be used to improve the patient–doctor relationship or facilitate its erosion remains to be seen.
Abstract: The use of artificial intelligence, and the deep-learning subtype in particular, has been enabled by the use of labeled big data, along with markedly enhanced computing power and cloud storage, across all sectors. In medicine, this is beginning to have an impact at three levels: for clinicians, predominantly via rapid, accurate image interpretation; for health systems, by improving workflow and the potential for reducing medical errors; and for patients, by enabling them to process their own data to promote health. The current limitations, including bias, privacy and security, and lack of transparency, along with the future directions of these applications will be discussed in this article. Over time, marked improvements in accuracy, productivity, and workflow will likely be actualized, but whether that will be used to improve the patient-doctor relationship or facilitate its erosion remains to be seen.

2,574 citations