scispace - formally typeset
Search or ask a question
Author

Michael H. Huang

Bio: Michael H. Huang is an academic researcher from National Tsing Hua University. The author has contributed to research in topics: Nanorod & Band gap. The author has an hindex of 61, co-authored 180 publications receiving 26770 citations. Previous affiliations of Michael H. Huang include University of California, Berkeley & Lawrence Berkeley National Laboratory.


Papers
More filters
Journal ArticleDOI
08 Jun 2001-Science
TL;DR: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated and self-organized, <0001> oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process.
Abstract: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process These wide band-gap semiconductor nanowires form natural laser cavities with diameters varying from 20 to 150 nanometers and lengths up to 10 micrometers Under optical excitation, surface-emitting lasing action was observed at 385 nanometers, with an emission linewidth less than 03 nanometer The chemical flexibility and the one-dimensionality of the nanowires make them ideal miniaturized laser light sources These short-wavelength nanolasers could have myriad applications, including optical computing, information storage, and microanalysis

8,592 citations

Journal ArticleDOI
TL;DR: In this paper, the capacitance matrix was calculated for different chain lengths using the software package FastCap MIT (1992) and a ligand shell dielectric constant of 3.14 aF.
Abstract: nanoparticles in dimethylsulfoxide onto the PLL film for about 20 min, after which it was rinsed in dimethylsulfoxide and then dichloromethane. From the molecular weight, the average length of the PLL is about 30 nm. Therefore, each polymer can accommodate about seven or eight nanoparticles. [20] L. Clarke, M. N. Wybourne, M. Yan, S. X. Cai, J. F. W. Keana, Appl. Phys. Lett. 1997, 71, 617. [21] A. A. Middleton, N. S. Wingreen, Phys. Rev. Lett. 1993, 71, 3198. [22] G. Y. Hu, R. F. O'Connell, Phys. Rev. B 1994, 49, 16 773. [23] A. J. Rimberg, T. R. Ho, J. Clarke, Phys. Rev. Lett. 1995, 74, 4714. [24] L. Clarke, M. N. Wybourne, M. Yan, S. X. Cai, L. O. Brown, J. Hutchison, J. F. W. Keana, J. Vac. Sci. Technol. B 1997, 15, 2925. [25] The capacitance matrix was calculated for different chain lengths using the software package FastCap MIT (1992). We used the nanoparticle dimensions given in the text and a ligand shell dielectric constant of 3. For nanoclusters away from the end of the chains we obtain Cdd » 0.04 aF and Cg » 0.17 aF. As expected, the value of Cg is slightly larger than the value calculated for an isolated metal sphere of radius a coated with a dielectric shell, Cg» (4pee0a)/(1 + (a/d)(e±1)) = 0.14 aF, where d is the total radius of the core plus ligand shell. [26] Simulations were carried out using both MOSES (Monte-Carlo SingleElectronics Simulator, R. H. Chen) and SIMON (Simulation of Nano Structures, C. Wasshuber). [27] S. Chen, R. S. Ingram, M. J. Hostetler, J. J. Pietron, R. W. Murray, T. G. Schaaff, J. T. Khoury, M. M. Alvarez, R. L. Whetton, Science 1998, 280, 2098. [28] L. Y. Gorelik, A. Isacsson, M. V. Voinova, B. Kasemo, R. I. Shekhter, M. Jonson, Phys. Rev. Lett. 1998, 80, 4526. [29] O. D. Häberlen, S. C. Chung, M. Stener, N. Rösch, J. Chem. Phys. 1997, 106, 5189. [30] Y. Awakuni, J. H. Calderwood, J. Phys. D: Appl. Phys. 1972, 5, 1038. [31] G. Markovich, C. P. Collier, J. R. Heath, Phys. Rev. Lett. 1998, 80, 3807. [32] C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Hendrichs, J. R. Heath, Science 1997, 277, 1978. [33] N. Mott, Metal Insulator Transitions, Taylor and Francis, London 1990.

2,726 citations

Journal ArticleDOI
25 Sep 1997-Nature
TL;DR: In this article, a solgel-based dip-coating method for the rapid synthesis of continuous mesoporous thin films on a solid substrate is presented, which can be used for membrane-based separations, selective catalysis and sensors.
Abstract: Thin films of surfactant-templated mesoporous materials1,2 could find applications in membrane-based separations, selective catalysis and sensors. Above the critical micelle concentration of a bulk silica–surfactant solution, films of mesophases with hexagonally packed one-dimensional channels can be formed at solid–liquid and liquid–vapour interfaces3,4,5. But this process is slow and the supported films3,5 are granular and with the pore channels oriented parallel to the substrate surface, so that transport across the films is not facilitated by the pores. Ogawa6,7 has reported a rapid spin-coating procedure for making transparent mesoporous films, but their formation mechanism, microstructure and pore accessibility have not been elucidated. Here we report a sol–gel-based dip-coating method for the rapid synthesis of continuous mesoporous thin films on a solid substrate. The influence of the substrate generates film mesostructures that have no bulk counterparts, such as composites with incipient liquid-crystalline order of the surfactant–silica phase. We are also able to form mesoporous films of the cubic phase, in which the pores are connected in a three-dimensional network that guarantees their accessibility from the film surface. We demonstrate and quantify this accessibility using a surface-acoustic-wave nitrogen-adsorption technique. We use fluorescence depolarization to monitor the evolution of the mesophase in situ, and see a progression through a sequence of lamellar to cubic to hexagonal structures that has not previously been reported.

1,390 citations

Journal ArticleDOI
13 Jan 2011-ACS Nano
TL;DR: Plasmonic effects influence the characteristics of polymer photovoltaic devices (OPVs) incorporating a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C(61)-butyric acid methyl ester to trigger localized surface plasmon resonance (LSPR), which enhanced the performance of the OPVs without dramatically sacrificing their electrical properties.
Abstract: We have systematically explored how plasmonic effects influence the characteristics of polymer photovoltaic devices (OPVs) incorporating a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). We blended gold nanoparticles (Au NPs) into the anodic buffer layer to trigger localized surface plasmon resonance (LSPR), which enhanced the performance of the OPVs without dramatically sacrificing their electrical properties. Steady state photoluminescence (PL) measurements revealed a significant increase in fluorescence intensity, which we attribute to the increased light absorption in P3HT induced by the LSPR. As a result, the rate of generation of excitons was enhanced significantly. Furthermore, dynamic PL measurements revealed that the LSPR notably reduced the lifetime of photogenerated excitons in the active blend, suggesting that interplay between the surface plasmons and excitons facilitated the charge transfer process. This phenomenon reduced the recombination level...

956 citations

Journal ArticleDOI
TL;DR: The rhombic dodecahedra exposing only the {110} facets exhibit an exceptionally good photocatalytic activity toward the fast and complete photodegradation of methyl orange due to a high number density of surface copper atoms, demonstrating the importance of their successful preparation.
Abstract: In this study, a new series of Cu2O nanocrystals with systematic shape evolution from cubic to face-raised cubic, edge- and corner-truncated octahedral, all-corner-truncated rhombic dodecahedral, {100}-truncated rhombic dodecahedral, and rhombic dodecahedral structures have been synthesized. The average sizes for the cubes, edge- and corner-truncated octahedra, {100}-truncated rhombic dodecahedra, and rhombic dodecahedra are approximately 200, 140, 270, and 290 nm, respectively. An aqueous mixture of CuCl2, sodium dodecyl sulfate, NaOH, and NH2OH·HCl was prepared to produce these nanocrystals at room temperature. Simple adjustment of the amounts of NH2OH·HCl introduced enables this particle shape evolution. These novel particle morphologies have been carefully analyzed by transmission electron microscopy (TEM). The solution color changes quickly from blue to green, yellow, and then orange within 1 min of reaction in the formation of nanocubes, while such color change takes 10–20 min in the growth of rhomb...

663 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
08 Jun 2001-Science
TL;DR: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated and self-organized, <0001> oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process.
Abstract: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process These wide band-gap semiconductor nanowires form natural laser cavities with diameters varying from 20 to 150 nanometers and lengths up to 10 micrometers Under optical excitation, surface-emitting lasing action was observed at 385 nanometers, with an emission linewidth less than 03 nanometer The chemical flexibility and the one-dimensionality of the nanowires make them ideal miniaturized laser light sources These short-wavelength nanolasers could have myriad applications, including optical computing, information storage, and microanalysis

8,592 citations

Journal ArticleDOI
14 Apr 2006-Science
TL;DR: This approach has the potential of converting mechanical, vibrational, and/or hydraulic energy into electricity for powering nanodevices.
Abstract: We have converted nanoscale mechanical energy into electrical energy by means of piezoelectric zinc oxide nanowire (NW) arrays. The aligned NWs are deflected with a conductive atomic force microscope tip in contact mode. The coupling of piezoelectric and semiconducting properties in zinc oxide creates a strain field and charge separation across the NW as a result of its bending. The rectifying characteristic of the Schottky barrier formed between the metal tip and the NW leads to electrical current generation. The efficiency of the NW-based piezoelectric power generator is estimated to be 17 to 30%. This approach has the potential of converting mechanical, vibrational, and/or hydraulic energy into electricity for powering nanodevices.

6,692 citations

Journal ArticleDOI
TL;DR: In this paper, a family of highly ordered mesoporous (20−300 A) structures have been synthesized by the use of commercially available nonionic alkyl poly(ethylene oxide) (PEO) oligomeric surfactants and poly(alkylene oxide) block copolymers in acid media.
Abstract: A family of highly ordered mesoporous (20−300 A) silica structures have been synthesized by the use of commercially available nonionic alkyl poly(ethylene oxide) (PEO) oligomeric surfactants and poly(alkylene oxide) block copolymers in acid media. Periodic arrangements of mescoscopically ordered pores with cubic Im3m, cubic Pm3m (or others), 3-d hexagonal (P63/mmc), 2-d hexagonal (p6mm), and lamellar (Lα) symmetries have been prepared. Under acidic conditions at room temperature, the nonionic oligomeric surfactants frequently form cubic or 3-d hexagonal mesoporous silica structures, while the nonionic triblock copolymers tend to form hexagonal (p6mm) mesoporous silica structures. A cubic mesoporous silica structure (SBA-11) with Pm3m diffraction symmetry has been synthesized in the presence of C16H33(OCH2CH2)10OH (C16EO10) surfactant species, while a 3-d hexagonal (P63/mmc) mesoporous silica structure (SBA-12) results when C18EO10 is used. Surfactants with short EO segments tend to form lamellar mesost...

6,274 citations

Journal ArticleDOI
TL;DR: The theoretical charge capacity for silicon nanowire battery electrodes is achieved and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.
Abstract: There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.

6,104 citations