scispace - formally typeset
Search or ask a question
Author

Michael Halle

Bio: Michael Halle is an academic researcher from Brigham and Women's Hospital. The author has contributed to research in topics: Visualization & Rendering (computer graphics). The author has an hindex of 21, co-authored 48 publications receiving 2445 citations. Previous affiliations of Michael Halle include Massachusetts Institute of Technology & Harvard University.


Papers
More filters
Proceedings Article
01 Jan 2004
TL;DR: Some of the goals of the 3D Slicer project are discussed and how the architecture helps support those goals and some of the practical issues which arise from this approach are pointed out.
Abstract: To be applied to practical clinical research problems, medical image computing software requires infrastructure including routines to read and write various file formats, manipulate 2D and 3D coordinate systems, and present a consistent user interface paradigm and visualization metaphor. At the same time, research software needs to be flexible to facilitate implementation of new ideas. 3D Slicer is a project that aims to provide a platform for a variety of applications through a community-development model. The resulting system has been used for research in both basic biomedical and clinically applied settings. 3D Slicer is built on a set of powerful and widely used software components (Tcl/Tk, VTK, ITK) to which is added an application layer that makes the system usable by non-programmer end-users. Using this approach, advanced applications including image guided surgery, robotics, brain mapping, and virtual colonoscopy have been implemented as 3D Slicer modules. In this paper we discuss some of the goals of the 3D Slicer project and how the architecture helps support those goals. We also point out some of the practical issues which arise from this approach.

543 citations

Journal ArticleDOI
TL;DR: This work gives an explicit method for mapping any simply connected surface onto the sphere in a manner which preserves angles and provides a new way to automatically assign texture coordinates to complex undulating surfaces.
Abstract: We give an explicit method for mapping any simply connected surface onto the sphere in a manner which preserves angles. This technique relies on certain conformal mappings from differential geometry. Our method provides a new way to automatically assign texture coordinates to complex undulating surfaces. We demonstrate a finite element method that can be used to apply our mapping technique to a triangulated geometric description of a surface.

400 citations

Journal ArticleDOI
TL;DR: In this article, the impact of molecular outflows in the Perseus molecular cloud complex using the COMPLETE Survey large-scale 12CO(1-0) and 13 CO(1 -0) maps was studied.
Abstract: We present a study on the impact of molecular outflows in the Perseus molecular cloud complex using the COMPLETE Survey large-scale 12CO(1-0) and 13CO(1-0) maps. We used three-dimensional isosurface models generated in right ascension-declination-velocity space to visualize the maps. This rendering of the molecular line data allowed for a rapid and efficient way to search for molecular outflows over a large (~16 deg2) area. Our outflow-searching technique detected previously known molecular outflows as well as new candidate outflows. Most of these new outflow-related high-velocity features lie in regions that have been poorly studied before. These new outflow candidates more than double the amount of outflow mass, momentum, and kinetic energy in the Perseus cloud complex. Our results indicate that outflows have significant impact on the environment immediately surrounding localized regions of active star formation, but lack the energy needed to feed the observed turbulence in the entire Perseus complex. This implies that other energy sources, in addition to protostellar outflows, are responsible for turbulence on a global cloud scale in Perseus. We studied the impact of outflows in six regions with active star formation within Perseus of sizes in the range of 1-4 pc. We find that outflows have enough power to maintain the turbulence in these regions and enough momentum to disperse and unbind some mass from them. We found no correlation between outflow strength and star formation efficiency (SFE) for the six different regions we studied, contrary to results of recent numerical simulations. The low fraction of gas that potentially could be ejected due to outflows suggests that additional mechanisms other than cloud dispersal by outflows are needed to explain low SFEs in clusters.

176 citations

Journal ArticleDOI
01 Jan 2009-Nature
TL;DR: A ‘dendrogram’ (hierarchical tree-diagram) analysis reveals that self-gravity plays a significant role over the full range of possible scales traced by 13CO observations in the L1448 molecular cloud, but not everywhere in the observed region.
Abstract: Self-gravity plays a decisive role in the final stages of star formation, where dense cores (size approximately 0.1 parsecs) inside molecular clouds collapse to form star-plus-disk systems. But self-gravity's role at earlier times (and on larger length scales, such as approximately 1 parsec) is unclear; some molecular cloud simulations that do not include self-gravity suggest that 'turbulent fragmentation' alone is sufficient to create a mass distribution of dense cores that resembles, and sets, the stellar initial mass function. Here we report a 'dendrogram' (hierarchical tree-diagram) analysis that reveals that self-gravity plays a significant role over the full range of possible scales traced by (13)CO observations in the L1448 molecular cloud, but not everywhere in the observed region. In particular, more than 90 per cent of the compact 'pre-stellar cores' traced by peaks of dust emission are projected on the sky within one of the dendrogram's self-gravitating 'leaves'. As these peaks mark the locations of already-forming stars, or of those probably about to form, a self-gravitating cocoon seems a critical condition for their existence. Turbulent fragmentation simulations without self-gravity-even of unmagnetized isothermal material-can yield mass and velocity power spectra very similar to what is observed in clouds like L1448. But a dendrogram of such a simulation shows that nearly all the gas in it (much more than in the observations) appears to be self-gravitating. A potentially significant role for gravity in 'non-self-gravitating' simulations suggests inconsistency in simulation assumptions and output, and that it is necessary to include self-gravity in any realistic simulation of the star-formation process on subparsec scales.

160 citations

Proceedings ArticleDOI
01 May 1997
TL;DR: Three classes of autostereoscopic displays are described: reimaging displays, volumetric displays, and parallax displays.
Abstract: Autostereoscopic displays present a three-dimensional image to a viewer without the need for glasses or other encumbering viewing aids. Three classes of autostereoscopic displays are described: reimaging displays, volumetric displays, and parallax displays. Reimaging displays reproject an existing three-dimensional object to a new location or depth. Volumetric displays illuminate points in a spatial volume. Parallax displays emit directionally-varying image information into the viewing zone. Parallax displays are the most common autostereoscopic displays and are most compatible with computer graphics. Different display technologies of the three types are described. Computer graphics techniques useful for three-dimensional image generation are outlined.

155 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: An overview of 3D Slicer is presented as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications and the utility of the platform in the scope of QIN is illustrated.

4,786 citations

Proceedings ArticleDOI
01 Aug 1996
TL;DR: This paper describes a sampled representation for light fields that allows for both efficient creation and display of inward and outward looking views, and describes a compression system that is able to compress the light fields generated by more than a factor of 100:1 with very little loss of fidelity.
Abstract: A number of techniques have been proposed for flying through scenes by redisplaying previously rendered or digitized views. Techniques have also been proposed for interpolating between views by warping input images, using depth information or correspondences between multiple images. In this paper, we describe a simple and robust method for generating new views from arbitrary camera positions without depth information or feature matching, simply by combining and resampling the available images. The key to this technique lies in interpreting the input images as 2D slices of a 4D function the light field. This function completely characterizes the flow of light through unobstructed space in a static scene with fixed illumination. We describe a sampled representation for light fields that allows for both efficient creation and display of inward and outward looking views. We hav e created light fields from large arrays of both rendered and digitized images. The latter are acquired using a video camera mounted on a computer-controlled gantry. Once a light field has been created, new views may be constructed in real time by extracting slices in appropriate directions. Since the success of the method depends on having a high sample rate, we describe a compression system that is able to compress the light fields we have generated by more than a factor of 100:1 with very little loss of fidelity. We also address the issues of antialiasing during creation, and resampling during slice extraction. CR Categories: I.3.2 [Computer Graphics]: Picture/Image Generation — Digitizing and scanning, Viewing algorithms; I.4.2 [Computer Graphics]: Compression — Approximate methods Additional keywords: image-based rendering, light field, holographic stereogram, vector quantization, epipolar analysis

4,426 citations

Proceedings ArticleDOI
01 Aug 1996
TL;DR: A new method for capturing the complete appearance of both synthetic and real world objects and scenes, representing this information, and then using this representation to render images of the object from new camera positions.
Abstract: This paper discusses a new method for capturing the complete appearance of both synthetic and real world objects and scenes, representing this information, and then using this representation to render images of the object from new camera positions. Unlike the shape capture process traditionally used in computer vision and the rendering process traditionally used in computer graphics, our approach does not rely on geometric representations. Instead we sample and reconstruct a 4D function, which we call a Lumigraph. The Lumigraph is a subset of the complete plenoptic function that describes the flow of light at all positions in all directions. With the Lumigraph, new images of the object can be generated very quickly, independent of the geometric or illumination complexity of the scene or object. The paper discusses a complete working system including the capture of samples, the construction of the Lumigraph, and the subsequent rendering of images from this new representation.

2,986 citations

01 Jan 2010
TL;DR: In this paper, the authors describe a scenario where a group of people are attempting to find a solution to the problem of "finding the needle in a haystack" in the environment.
Abstract: 中枢神経系疾患の治療は正常細胞(ニューロン)の機能維持を目的とするが,脳血管障害のように機能障害の原因が細胞の死滅に基づくことは多い.一方,脳腫瘍の治療においては薬物療法や放射線療法といった腫瘍細胞の死滅を目標とするものが大きな位置を占める.いずれの場合にも,細胞死の機序を理解することは各種病態や治療法の理解のうえで重要である.現在のところ最も研究の進んでいる細胞死の型はアポトーシスである.そのなかで重要な位置を占めるミトコンドリアにおける反応および抗アポトーシス因子について概要を紹介する.

2,716 citations