scispace - formally typeset
Search or ask a question
Author

Michael Hunger

Other affiliations: DECHEMA, Indian Institute of Petroleum, Lanzhou University  ...read more
Bio: Michael Hunger is an academic researcher from University of Stuttgart. The author has contributed to research in topics: Catalysis & Zeolite. The author has an hindex of 60, co-authored 295 publications receiving 11370 citations. Previous affiliations of Michael Hunger include DECHEMA & Indian Institute of Petroleum.


Papers
More filters
Journal ArticleDOI
TL;DR: In the last 15 years, NMR spectroscopy has found numerous applications for the determination of the types of hydroxyl proton in zeolites, of their concentration, accessibility, and mobility, and for the characterization of their acid strength and local structure as discussed by the authors.
Abstract: Nearly all atoms contributing to the local structure of Br⊘nsted acid sites in zeolites exhibit isotopes accessible for multinuclear solid-state nuclear magnetic resonance (NMR) investigations. Therefore, in the last 15 years, NMR spectroscopy has found numerous applications for the determination of the types of hydroxyl proton in zeolites, of their concentration, accessibility, and mobility, and for the characterization of their acid strength and local structure. It allows the study of the role of hydroxyl groups in the formation of adsorbate complexes and in heterogeneously catalyzed reactions. Meanwhile, NMR spectroscopy belongs to the most powerful techniques for the characterization of Br⊘nsted acid sites in zeolites and related materials. The basis of this success is the invention of new sample preparation techniques, external magnetic fields with high-flux densities, effective line-narrowing methods, and new two-dimensional experiments, making the detection of highly resolved solid-state N...

297 citations

Journal ArticleDOI
TL;DR: A survey on these new solid bases, their applications in heterogeneous catalysis and new spectroscopic techniques allowing a more detailed investigation of base sites and adsorbates on working catalysts is given in this paper.

245 citations

Journal ArticleDOI
TL;DR: In this article, a two-step post-synthesis strategy was proposed to create vacant T sites with associated silanol groups by dealumination of parent H-Beta and subsequent dry impregnation of the resulting Si-Beta with organometallic dimethyltin dichloride.
Abstract: Nanocrystalline Sn-Beta zeolites have been successfully prepared via an improved two-step postsynthesis strategy, which consists of creating vacant T sites with associated silanol groups by dealumination of parent H-Beta and subsequent dry impregnation of the resulting Si-Beta with organometallic dimethyltin dichloride. Characterization results from UV−vis, XPS, Raman, and 119 Sn solid-state MAS NMR reveal that most Sn species have been successfully incorpo- rated into the framework of Beta zeolite through the postsynthesis process and exist as isolated tetrahedral Sn(IV) in open arrangement. The creation of strong Lewis acid sites upon Sn incorporation is confirmed by FTIR spectroscopy with pyridine adsorption. The Sn-Beta Lewis acid catalysts are applied in the ring-opening hydration of epoxides to the corresponding 1,2-diols under near ambient and solvent-free conditions, and remarkable activity can be obtained. The impacts of Lewis acidity, preparation parameters, and reaction conditions on the catalytic performance of Sn-Beta zeolites are discussed in detail.

236 citations

Journal ArticleDOI
TL;DR: The formation of hydrocarbons from pure methoxy species alone is demonstrated for the first time and indicates a possible formation of the first hydrocarols during the kinetic induction period of the MTO process via the conversion of pure surface Methoxy species.
Abstract: Recent progress reveals that, in the methanol-to-olefin (MTO) process on acidic zeolites, the conversion of an equilibrium mixture of methanol and DME is dominated by a “hydrocarbon pool” mechanism. However, the initial C−C bond formation, that is, the chemistry during the kinetic “induction period” leading to the reactive hydrocarbon pool, still remains unclear. With the application of a stopped-flow protocol, in the present work, pure surface methoxy groups [SiO(CH3)Al] were prepared on various acidic zeolite catalysts (H−Y, H−ZSM-5, H−SAPO-34) at temperatures lower than 473 K, and the further reaction of these methoxy species was investigated by in situ 13C MAS NMR spectroscopy. By using toluene and cyclohexane as probe molecules which are possibly involved in the MTO process, we show the high reactivity of surface methoxy species. Most importantly, the formation of hydrocarbons from pure methoxy species alone is demonstrated for the first time. It was found that (i) surface methoxy species react at ro...

215 citations

Journal ArticleDOI
TL;DR: The reactivity and possible intermediate role of surface alkoxy species in a variety of zeolite-catalyzed reactions is described and the reacted species is examined in terms of C-O bond and C-H bond activation.
Abstract: A solid understanding of the mechanisms involved in heterogeneously catalyzed reactions is of fundamental interest for modern chemistry. This information can help to refine modern theories of catalysis and, in a very practical way, can help researchers to optimize existing industrial processes and develop new ones. To understand the mechanisms of heterogeneous catalysis, we need to observe and identify reaction intermediates on a working catalyst. Motivated by this goal, we have monitored the catalytic events in heterogeneous systems using in situ magic-angle-spinning (MAS) NMR under flow conditions. In this Account, we describe the reactivity and possible intermediate role of surface alkoxy species in a variety of zeolite-catalyzed reactions. First, we isolate the surface alkoxy species on a working zeolite catalyst and then investigate the chemical reactivity with different probe molecules under reaction conditions. Finally, we investigate reaction mechanisms facilitated by these intermediate surface al...

213 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the synthesis, characterization, and proposed mechanism of formation of a new family of silicatelaluminosilicate mesoporous molecular sieves designated as M41S is described.
Abstract: The synthesis, characterization, and proposed mechanism of formation of a new family of silicatelaluminosilicate mesoporous molecular sieves designated as M41S is described. MCM-41, one member of this family, exhibits a hexagonal arrangement of uniform mesopores whose dimensions may be engineered in the range of - 15 A to greater than 100 A. Other members of this family, including a material exhibiting cubic symmetry, have ken synthesized. The larger pore M41S materials typically have surface areas above 700 m2/g and hydrocarbon sorption capacities of 0.7 cc/g and greater. A templating mechanism (liquid crystal templating-LCT) in which surfactant liquid crystal structures serve as organic templates is proposed for the formation of these materials. In support of this templating mechanism, it was demonstrated that the structure and pore dimensions of MCM-41 materials are intimately linked to the properties of the surfactant, including surfactant chain length and solution chemistry. The presence of variable pore size MCM-41, cubic material, and other phases indicates that M41S is an extensive family of materials.

10,349 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: An overview of the preparation, properties, and potential applications of mesoporous organic-inorganic hybrid materials in the areas of catalysis, sorption, chromatography, and the construction of systems for controlled release of active compounds, as well as molecular switches, are given.
Abstract: Mesoporous organic-inorganic hybrid materials, a new class of materials characterized by large specific surface areas and pore sizes between 2 and 15 nm, have been obtained through the coupling of inorganic and organic components by template synthesis. The incorporation of functionalities can be achieved in three ways: by subsequent attachment of organic components onto a pure silica matrix (grafting), by simultaneous reaction of condensable inorganic silica species and silylated organic compounds (co-condensation, one-pot synthesis), and by the use of bissilylated organic precursors that lead to periodic mesoporous organosilicas (PMOs). This Review gives an overview of the preparation, properties, and potential applications of these materials in the areas of catalysis, sorption, chromatography, and the construction of systems for controlled release of active compounds, as well as molecular switches, with the main focus being on PMOs.

2,765 citations

Journal ArticleDOI
TL;DR: This critical review describes the state-of-the-art development in the design, synthesis, characterisation, and application of the crystalline porous COF materials.
Abstract: Covalent organic frameworks (COFs) represent an exciting new type of porous organic materials, which are ingeniously constructed with organic building units via strong covalent bonds. The well-defined crystalline porous structures together with tailored functionalities have offered the COF materials superior potential in diverse applications, such as gas storage, adsorption, optoelectricity, and catalysis. Since the seminal work of Yaghi and co-workers in 2005, the rapid development in this research area has attracted intensive interest from researchers with diverse expertise. This critical review describes the state-of-the-art development in the design, synthesis, characterisation, and application of the crystalline porous COF materials. Our own opinions on further development of the COF materials are also presented for discussion (155 references).

2,572 citations