scispace - formally typeset
Search or ask a question
Author

Michael I. Jordan

Other affiliations: Stanford University, Princeton University, Broad Institute  ...read more
Bio: Michael I. Jordan is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Computer science & Inference. The author has an hindex of 176, co-authored 1016 publications receiving 216204 citations. Previous affiliations of Michael I. Jordan include Stanford University & Princeton University.


Papers
More filters
Posted Content
TL;DR: The article rigorously establishes why symplectic discretization schemes are important for momentum-based optimization algorithms, and provides a characterization of algorithms that exhibit accelerated convergence.
Abstract: We analyze the convergence rate of various momentum-based optimization algorithms from a dynamical systems point of view. Our analysis exploits fundamental topological properties, such as the continuous dependence of iterates on their initial conditions, to provide a simple characterization of convergence rates. In many cases, closed-form expressions are obtained that relate algorithm parameters to the convergence rate. The analysis encompasses discrete time and continuous time, as well as time-invariant and time-variant formulations, and is not limited to a convex or Euclidean setting. In addition, the article rigorously establishes why symplectic discretization schemes are important for momentum-based optimization algorithms, and provides a characterization of algorithms that exhibit accelerated convergence.

29 citations

Proceedings Article
02 Mar 2016
TL;DR: In this paper, a variational characterization of the performance of a regularized learner for real-valued regression problem in a semisupervised setting is presented, where one observes n labeled vertices, and the task is to label the remaining ones.
Abstract: Given a weighted graph with N vertices, consider a real-valued regression problem in a semisupervised setting, where one observes n labeled vertices, and the task is to label the remaining ones. We present a theoretical study of `p-based Laplacian regularization under a d-dimensional geometric random graph model. We provide a variational characterization of the performance of this regularized learner as N grows to infinity while n stays constant; the associated optimality conditions lead to a partial differential equation that must be satisfied by the associated function estimate f . From this formulation we derive several predictions on the limiting behavior the function f , including (a) a phase transition in its smoothness at the threshold p = d + 1; and (b) a tradeoff between smoothness and sensitivity to the underlying unlabeled data distribution P . Thus, over the range p ≤ d, the function estimate f is degenerate and “spiky,” whereas for p ≥ d + 1, the function estimate f is smooth. We show that the effect of the underlying density vanishes monotonically with p, such that in the limit p = ∞, corresponding to the so-called Absolutely Minimal Lipschitz Extension, the estimate f is independent of the distribution P . Under the assumption of semi-supervised smoothness, ignoring P can lead to poor statistical performance; in particular, we construct a specific example for d = 1 to demonstrate that p = 2 has lower risk than p =∞ due to the former penalty adapting to P and the latter ignoring it. We also provide simulations that verify the accuracy of our predictions for finite sample sizes. Together, these properties show that p = d + 1 is an optimal choice, yielding a function estimate f that is both smooth and non-degenerate, while remaining maximally sensitive to P .

29 citations

Posted Content
05 May 2014
TL;DR: In this article, the authors define and study some refinements of the classical minimax risk that apply to distributed settings, comparing to the performance of estimators with access to the entire data.
Abstract: Large data sets often require performing distributed statistical estimation, with a full data set split across multiple machines and limited communication between machines. To study such scenarios, we define and study some refinements of the classical minimax risk that apply to distributed settings, comparing to the performance of estimators with access to the entire data. Lower bounds on these quantities provide a precise characterization of the minimum amount of communication required to achieve the centralized minimax risk. We study two classes of distributed protocols: one in which machines send messages independently over channels without feedback, and a second allowing for interactive communication, in which a central server broadcasts the messages from a given machine to all other machines. We establish lower bounds for a variety of problems, including location estimation in several families and parameter estimation in different types of regression models. Our results include a novel class of quantitative data-processing inequalities used to characterize the effects of limited communication.

29 citations

Journal ArticleDOI
TL;DR: A likelihood-based method using an interleaved hidden Markov model (HMM) that can jointly estimate the aforementioned three parameters fundamental to recombination and shows that modeling overlapping gene conversions is crucial for improving the joint estimation of the gene conversion rate and the mean conversion tract length.
Abstract: Motivation: Two known types of meiotic recombination are crossovers and gene conversions. Although they leave behind different footprints in the genome, it is a challenging task to tease apart their relative contributions to the observed genetic variation. In particular, for a given population SNP dataset, the joint estimation of the crossover rate, the gene conversion rate and the mean conversion tract length is widely viewed as a very difficult problem. Results: In this article, we devise a likelihood-based method using an interleaved hidden Markov model (HMM) that can jointly estimate the aforementioned three parameters fundamental to recombination. Our method significantly improves upon a recently proposed method based on a factorial HMM. We show that modeling overlapping gene conversions is crucial for improving the joint estimation of the gene conversion rate and the mean conversion tract length. We test the performance of our method on simulated data. We then apply our method to analyze real biological data from the telomere of the X chromosome of Drosophila melanogaster, and show that the ratio of the gene conversion rate to the crossover rate for the region may not be nearly as high as previously claimed. Availability: A software implementation of the algorithms discussed in this article is available at http://www.cs.berkeley.edu/~yss/software.html. Contact: yss@eecs.berkeley.edu

29 citations

Posted Content
TL;DR: This research presents a novel probabilistic approach to estimating the response of the immune system to laser-spot assisted, 3D image analysis of central nervous system injury.
Abstract: Reference EPFL-REPORT-229241 URL: http://arxiv.org/abs/1512.04011 Record created on 2017-06-21, modified on 2017-07-12

29 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

Journal ArticleDOI
TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Abstract: We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.

30,570 citations

Proceedings Article
03 Jan 2001
TL;DR: This paper proposed a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI).
Abstract: We propose a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams [6], and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI) [3]. In the context of text modeling, our model posits that each document is generated as a mixture of topics, where the continuous-valued mixture proportions are distributed as a latent Dirichlet random variable. Inference and learning are carried out efficiently via variational algorithms. We present empirical results on applications of this model to problems in text modeling, collaborative filtering, and text classification.

25,546 citations