scispace - formally typeset
Search or ask a question
Author

Michael I. Jordan

Other affiliations: Stanford University, Princeton University, Broad Institute  ...read more
Bio: Michael I. Jordan is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Computer science & Inference. The author has an hindex of 176, co-authored 1016 publications receiving 216204 citations. Previous affiliations of Michael I. Jordan include Stanford University & Princeton University.


Papers
More filters
Journal ArticleDOI
TL;DR: An asymptotic approximation to the optimal cost of stationary quantization rules is developed and exploited to show that stationary quantizers are not optimal in a broad class of settings.
Abstract: We consider the design of systems for sequential decentralized detection, a problem that entails several interdependent choices: the choice of a stopping rule (specifying the sample size), a global decision function (a choice between two competing hypotheses), and a set of quantization rules (the local decisions on the basis of which the global decision is made). This correspondence addresses an open problem of whether in the Bayesian formulation of sequential decentralized detection, optimal local decision functions can be found within the class of stationary rules. We develop an asymptotic approximation to the optimal cost of stationary quantization rules and exploit this approximation to show that stationary quantizers are not optimal in a broad class of settings. We also consider the class of blockwise-stationary quantizers, and show that asymptotically optimal quantizers are likelihood-based threshold rules.

15 citations

Journal ArticleDOI
TL;DR: In this paper, a non-asymptotic variational characterization of divergences is proposed, which allows the problem of estimating divergence to be tackled via convex empirical risk optimization, and is simple to implement, requiring only the solution of standard convex programs.
Abstract: We develop and analyze $M$-estimation methods for divergence functionals and the likelihood ratios of two probability distributions. Our method is based on a non-asymptotic variational characterization of $f$-divergences, which allows the problem of estimating divergences to be tackled via convex empirical risk optimization. The resulting estimators are simple to implement, requiring only the solution of standard convex programs. We present an analysis of consistency and convergence for these estimators. Given conditions only on the ratios of densities, we show that our estimators can achieve optimal minimax rates for the likelihood ratio and the divergence functionals in certain regimes. We derive an efficient optimization algorithm for computing our estimates, and illustrate their convergence behavior and practical viability by simulations.

15 citations

Posted Content
TL;DR: The theoretical complexity analysis for new algorithms to compute the optimal transport (OT) distance between two discrete probability distributions is provided, and their favorable practical performance over state-of-art primal-dual algorithms is demonstrated.
Abstract: We provide theoretical complexity analysis for new algorithms to compute the optimal transport (OT) distance between two discrete probability distributions, and demonstrate their favorable practical performance over state-of-art primal-dual algorithms and their capability in solving other problems in large-scale, such as the Wasserstein barycenter problem for multiple probability distributions. First, we introduce the \emph{accelerated primal-dual randomized coordinate descent} (APDRCD) algorithm for computing the OT distance. We provide its complexity upper bound $\bigOtil(\frac{n^{5/2}}{\varepsilon})$ where $n$ stands for the number of atoms of these probability measures and $\varepsilon > 0$ is the desired accuracy. This complexity bound matches the best known complexities of primal-dual algorithms for the OT problems, including the adaptive primal-dual accelerated gradient descent (APDAGD) and the adaptive primal-dual accelerated mirror descent (APDAMD) algorithms. Then, we demonstrate the better performance of the APDRCD algorithm over the APDAGD and APDAMD algorithms through extensive experimental studies, and further improve its practical performance by proposing a greedy version of it, which we refer to as \emph{accelerated primal-dual greedy coordinate descent} (APDGCD). Finally, we generalize the APDRCD and APDGCD algorithms to distributed algorithms for computing the Wasserstein barycenter for multiple probability distributions.

15 citations

Proceedings ArticleDOI
12 Aug 2012
TL;DR: A new procedure, the "bag of little bootstraps," is presented, which circumvents this problem, inheriting the favorable theoretical properties of the bootstrap but also having a much more favorable computational profile.
Abstract: I present some recent work on statistical inference for Big Data. Divide-and-conquer is a natural computational paradigm for approaching Big Data problems, particularly given recent developments in distributed and parallel computing, but some interesting challenges arise when applying divide-and-conquer algorithms to statistical inference problems. One interesting issue is that of obtaining confidence intervals in massive datasets.The bootstrap principle suggests resampling data to obtain fluctuations in the values of estimators, and thereby confidence intervals, but this is infeasible with massive data. Subsampling the data yields fluctuations on the wrong scale, which have to be corrected to provide calibrated statistical inferences. I present a new procedure, the "bag of little bootstraps," which circumvents this problem, inheriting the favorable theoretical properties of the bootstrap but also having a much more favorable computational profile. Another issue that I discuss is the problem of large-scale matrix completion. Here divide-and-conquer is a natural heuristic that works well in practice, but new theoretical problems arise when attempting to characterize the statistical performance of divide-and-conquer algorithms. Here the theoretical support is provided by concentration theorems for random matrices, and I present a new approach to this problem based on Stein's method1.

15 citations

Proceedings Article
01 Jan 2002
TL;DR: In this paper, the authors address the question of convergence in the loopy belief propagation (LBP) algorithm and derive sufficient conditions for convergence using tools from the theory of Gibbs measures.
Abstract: We address the question of convergence in the loopy belief propagation (LBP) algorithm. Specifically, we relate convergence of LBP to the existence of a weak limit for a sequence of Gibbs measures defined on the LBP s associated computation tree.Using tools FROM the theory OF Gibbs measures we develop easily testable sufficient conditions FOR convergence.The failure OF convergence OF LBP implies the existence OF multiple phases FOR the associated Gibbs specification.These results give new insight INTO the mechanics OF the algorithm.

15 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

Journal ArticleDOI
TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Abstract: We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.

30,570 citations

Proceedings Article
03 Jan 2001
TL;DR: This paper proposed a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI).
Abstract: We propose a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams [6], and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI) [3]. In the context of text modeling, our model posits that each document is generated as a mixture of topics, where the continuous-valued mixture proportions are distributed as a latent Dirichlet random variable. Inference and learning are carried out efficiently via variational algorithms. We present empirical results on applications of this model to problems in text modeling, collaborative filtering, and text classification.

25,546 citations