scispace - formally typeset
Search or ask a question
Author

Michael I. Jordan

Other affiliations: Stanford University, Princeton University, Broad Institute  ...read more
Bio: Michael I. Jordan is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Computer science & Inference. The author has an hindex of 176, co-authored 1016 publications receiving 216204 citations. Previous affiliations of Michael I. Jordan include Stanford University & Princeton University.


Papers
More filters
Posted Content
TL;DR: In this article, the authors provide a framework for analysis of nonlinear dimensionality reduction via a connection to the statistical theory of linear smoothers, and show that existing NLDR methods correspond to discrete approximations of the solutions of sets of differential equations given a boundary condition.
Abstract: We develop theory for nonlinear dimensionality reduction (NLDR). A number of NLDR methods have been developed, but there is limited understanding of how these methods work and the relationships between them. There is limited basis for using existing NLDR theory for deriving new algorithms. We provide a novel framework for analysis of NLDR via a connection to the statistical theory of linear smoothers. This allows us to both understand existing methods and derive new ones. We use this connection to smoothing to show that asymptotically, existing NLDR methods correspond to discrete approximations of the solutions of sets of differential equations given a boundary condition. In particular, we can characterize many existing methods in terms of just three limiting differential operators and boundary conditions. Our theory also provides a way to assert that one method is preferable to another; indeed, we show Local Tangent Space Alignment is superior within a class of methods that assume a global coordinate chart defines an isometric embedding of the manifold.

7 citations

Posted Content
TL;DR: In this article, a combinatorial stochastic process known as the negative binomial process (NBP) is introduced as an infinite-dimensional prior appropriate for latent class problems.
Abstract: We develop a Bayesian nonparametric approach to a general family of latent class problems in which individuals can belong simultaneously to multiple classes and where each class can be exhibited multiple times by an individual. We introduce a combinatorial stochastic process known as the negative binomial process (NBP) as an infinite-dimensional prior appropriate for such problems. We show that the NBP is conjugate to the beta process, and we characterize the posterior distribution under the beta-negative binomial process (BNBP) and hierarchical models based on the BNBP (the HBNBP). We study the asymptotic properties of the BNBP and develop a three-parameter extension of the BNBP that exhibits power-law behavior. We derive MCMC algorithms for posterior inference under the HBNBP, and we present experiments using these algorithms in the domains of image segmentation, object recognition, and document analysis.

7 citations

Posted Content
TL;DR: Rob-ULA is proposed, a robust variant of the Unadjusted Langevin Algorithm, and a finite-sample analysis of its sampling distribution is provided, which shows that after $T= \tilde{\mathcal{O}}(d/\varepsilon_{\textsf{acc}})$ iterations, the authors can sample from $p_T$ such that $\text{dist}( p_T, p^*) \leq \vARpsilon
Abstract: We study the problem of robustly estimating the posterior distribution for the setting where observed data can be contaminated with potentially adversarial outliers. We propose Rob-ULA, a robust variant of the Unadjusted Langevin Algorithm (ULA), and provide a finite-sample analysis of its sampling distribution. In particular, we show that after $T= \tilde{\mathcal{O}}(d/\varepsilon_{\textsf{acc}})$ iterations, we can sample from $p_T$ such that $\text{dist}(p_T, p^*) \leq \varepsilon_{\textsf{acc}} + \tilde{\mathcal{O}}(\epsilon)$, where $\epsilon$ is the fraction of corruptions. We corroborate our theoretical analysis with experiments on both synthetic and real-world data sets for mean estimation, regression and binary classification.

7 citations

Proceedings Article
03 Dec 1996
TL;DR: From this path functional, the Euler-Lagrange equations for extremal motion are derived and it is shown that this interpolation can be done efficiently, in high dimensions, for Gaussian, Dirichlet, and mixture models.
Abstract: Given a multidimensional data set and a model of its density, we consider how to define the optimal interpolation between two points. This is done by assigning a cost to each path through space, based on two competing goals-one to interpolate through regions of high density, the other to minimize arc length. From this path functional, we derive the Euler-Lagrange equations for extremal motion; given two points, the desired interpolation is found by solving a boundary value problem. We show that this interpolation can be done efficiently, in high dimensions, for Gaussian, Dirichlet, and mixture models.

7 citations

Proceedings Article
03 Dec 1996
TL;DR: Two ways of embedding the triangulation problem into continuous domain are presented and it is shown that they perform well compared to the best known heuristic.
Abstract: When triangulating a belief network we aim to obtain a junction tree of minimum state space. According to (Rose, 1970), searching for the optimal triangulation can be cast as a search over all the permutations of the graph's vertices. Our approach is to embed the discrete set of permutations in a convex continuous domain D. By suitably extending the cost function over D and solving the continous nonlinear optimization task we hope to obtain a good triangulation with respect to the aformentioned cost. This paper presents two ways of embedding the triangulation problem into continuous domain and shows that they perform well compared to the best known heuristic.

7 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

Journal ArticleDOI
TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Abstract: We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.

30,570 citations

Proceedings Article
03 Jan 2001
TL;DR: This paper proposed a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI).
Abstract: We propose a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams [6], and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI) [3]. In the context of text modeling, our model posits that each document is generated as a mixture of topics, where the continuous-valued mixture proportions are distributed as a latent Dirichlet random variable. Inference and learning are carried out efficiently via variational algorithms. We present empirical results on applications of this model to problems in text modeling, collaborative filtering, and text classification.

25,546 citations