scispace - formally typeset
Search or ask a question
Author

Michael I. Jordan

Other affiliations: Stanford University, Princeton University, Broad Institute  ...read more
Bio: Michael I. Jordan is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Computer science & Inference. The author has an hindex of 176, co-authored 1016 publications receiving 216204 citations. Previous affiliations of Michael I. Jordan include Stanford University & Princeton University.


Papers
More filters
Book ChapterDOI
01 Jan 1994
TL;DR: A new framework for learning without state-estimation in POMDPs is developed by including stochastic policies in the search space, and by defining the value or utility of a distribution over states.
Abstract: Reinforcement learning (RL) algorithms provide a sound theoretical basis for building learning control architectures for embedded agents. Unfortunately all of the theory and much of the practice (see Barto et al ., 1983, for an exception) of RL is limited to Markovian decision processes (MDPs). Many real-world decision tasks, however, are inherently non-Markovian, i.e., the state of the environment is only incompletely known to the learning agent. In this paper we consider only partially observable MDPs (POMDPs), a useful class of non-Markovian decision processes. Most previous approaches to such problems have combined computationally expensive state-estimation techniques with learning control. This paper investigates learning in POMDPs without resorting to any form of state estimation. We present results about what TD(0) and Q-learning will do when applied to POMDPs. It is shown that the conventional discounted RL framework is inadequate to deal with POMDPs. Finally we develop a new framework for learning without state-estimation in POMDPs by including stochastic policies in the search space, and by defining the value or utility of a distribution over states.

406 citations

Posted Content
TL;DR: This work argues for distributing RL components in a composable way by adapting algorithms for top-down hierarchical control, thereby encapsulating parallelism and resource requirements within short-running compute tasks, through RLlib: a library that provides scalable software primitives for RL.
Abstract: Reinforcement learning (RL) algorithms involve the deep nesting of highly irregular computation patterns, each of which typically exhibits opportunities for distributed computation. We argue for distributing RL components in a composable way by adapting algorithms for top-down hierarchical control, thereby encapsulating parallelism and resource requirements within short-running compute tasks. We demonstrate the benefits of this principle through RLlib: a library that provides scalable software primitives for RL. These primitives enable a broad range of algorithms to be implemented with high performance, scalability, and substantial code reuse. RLlib is available at this https URL.

405 citations

Proceedings Article
01 Jan 1994
TL;DR: This work proposes and analyze a new learning algorithm to solve a certain class of non-Markov decision problems and operates in the space of stochastic policies, a space which can yield a policy that performs considerably better than any deterministic policy.
Abstract: Increasing attention has been paid to reinforcement learning algorithms in recent years, partly due to successes in the theoretical analysis of their behavior in Markov environments. If the Markov assumption is removed, however, neither generally the algorithms nor the analyses continue to be usable. We propose and analyze a new learning algorithm to solve a certain class of non-Markov decision problems. Our algorithm applies to problems in which the environment is Markov, but the learner has restricted access to state information. The algorithm involves a Monte-Carlo policy evaluation combined with a policy improvement method that is similar to that of Markov decision problems and is guaranteed to converge to a local maximum. The algorithm operates in the space of stochastic policies, a space which can yield a policy that performs considerably better than any deterministic policy. Although the space of stochastic policies is continuous--even for a discrete action space--our algorithm is computationally tractable.

404 citations

Posted Content
TL;DR: In this paper, the authors propose a new approach to the problem of policy search for a Markov decision process (MDP) or a partially observable MDP (POMDP) given a model.
Abstract: We propose a new approach to the problem of searching a space of policies for a Markov decision process (MDP) or a partially observable Markov decision process (POMDP), given a model. Our approach is based on the following observation: Any (PO)MDP can be transformed into an "equivalent" POMDP in which all state transitions (given the current state and action) are deterministic. This reduces the general problem of policy search to one in which we need only consider POMDPs with deterministic transitions. We give a natural way of estimating the value of all policies in these transformed POMDPs. Policy search is then simply performed by searching for a policy with high estimated value. We also establish conditions under which our value estimates will be good, recovering theoretical results similar to those of Kearns, Mansour and Ng (1999), but with "sample complexity" bounds that have only a polynomial rather than exponential dependence on the horizon time. Our method applies to arbitrary POMDPs, including ones with infinite state and action spaces. We also present empirical results for our approach on a small discrete problem, and on a complex continuous state/continuous action problem involving learning to ride a bicycle.

404 citations

Proceedings Article
30 Jun 2000
TL;DR: This work proposes a new approach to the problem of searching a space of policies for a Markov decision process (MDP) or a partially observable Markov decisions process (POMDP), given a model, based on the following observation: Any (PO)MDP can be transformed into an "equivalent" POMDP in which all state transitions are deterministic.
Abstract: We propose a new approach to the problem of searching a space of policies for a Markov decision process (MDP) or a partially observable Markov decision process (POMDP), given a model. Our approach is based on the following observation: Any (PO)MDP can be transformed into an "equivalent" POMDP in which all state transitions (given the current state and action) are deterministic. This reduces the general problem of policy search to one in which we need only consider POMDPs with deterministic transitions. We give a natural way of estimating the value of all policies in these transformed POMDPs. Policy search is then simply performed by searching for a policy with high estimated value. We also establish conditions under which our value estimates will be good, recovering theoretical results similar to those of Kearns, Mansour and Ng [7], but with "sample complexity" bounds that have only a polynomial rather than exponential dependence on the horizon time. Our method applies to arbitrary POMDPs, including ones with infinite state and action spaces. We also present empirical results for our approach on a small discrete problem, and on a complex continuous state/continuous action problem involving learning to ride a bicycle.

397 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

Journal ArticleDOI
TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Abstract: We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.

30,570 citations

Proceedings Article
03 Jan 2001
TL;DR: This paper proposed a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI).
Abstract: We propose a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams [6], and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI) [3]. In the context of text modeling, our model posits that each document is generated as a mixture of topics, where the continuous-valued mixture proportions are distributed as a latent Dirichlet random variable. Inference and learning are carried out efficiently via variational algorithms. We present empirical results on applications of this model to problems in text modeling, collaborative filtering, and text classification.

25,546 citations