scispace - formally typeset
Search or ask a question
Author

Michael I. Jordan

Other affiliations: Stanford University, Princeton University, Broad Institute  ...read more
Bio: Michael I. Jordan is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Computer science & Inference. The author has an hindex of 176, co-authored 1016 publications receiving 216204 citations. Previous affiliations of Michael I. Jordan include Stanford University & Princeton University.


Papers
More filters
Posted Content
TL;DR: These results show that it is possible for empirical expectations of functions to concentrate long before the underlying chain has mixed in the classical sense, and it is shown that the concentration rates achieved are optimal up to constants.
Abstract: Slow mixing is the central hurdle when working with Markov chains, especially those used for Monte Carlo approximations (MCMC). In many applications, it is only of interest to estimate the stationary expectations of a small set of functions, and so the usual definition of mixing based on total variation convergence may be too conservative. Accordingly, we introduce function-specific analogs of mixing times and spectral gaps, and use them to prove Hoeffding-like function-specific concentration inequalities. These results show that it is possible for empirical expectations of functions to concentrate long before the underlying chain has mixed in the classical sense, and we show that the concentration rates we achieve are optimal up to constants. We use our techniques to derive confidence intervals that are sharper than those implied by both classical Markov chain Hoeffding bounds and Berry-Esseen-corrected CLT bounds. For applications that require testing, rather than point estimation, we show similar improvements over recent sequential testing results for MCMC. We conclude by applying our framework to real data examples of MCMC, providing evidence that our theory is both accurate and relevant to practice.

2 citations

Proceedings ArticleDOI
TL;DR: In this paper , a constructive algorithm that approximates Gateaux derivatives for statistical functionals by variance differencing is proposed, with a focus on functionals that arise in causal inference, and requirements on the rates of numerical approximation in perturbation and smoothing that preserve the statistical bene�ts of one-step adjustments, such as rate double robustness.
Abstract: We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing, with a focus on functionals that arise in causal inference. We study the case where probability distributions are not known a priori but need to be estimated from data. These estimated distributions lead to empirical Gateaux derivatives, and we study the relationships between empirical, numerical, and analytical Gateaux derivatives. Starting with a case study of the interventional mean (average potential outcome), we delineate the relationship between finite differences and the analytical Gateaux derivative. We then derive requirements on the rates of numerical approximation in perturbation and smoothing that preserve the statistical benefits of one-step adjustments, such as rate double robustness. We then study more complicated functionals such as dynamic treatment regimes and the linear-programming formulation for policy optimization in infinite-horizon Markov decision processes. The ability to approximate bias adjustments in the presence of arbitrary constraints illustrates the usefulness of constructive approaches for Gateaux derivatives. We also find that the statistical structure of the functional (rate double robustness) can permit less conservative rates for finite-difference approximation. This property, however, can be specific to particular functionals; e.g., it occurs for the average potential outcome (hence average treatment effect) but not the infinite-horizon MDP policy value.

2 citations

Posted Content
TL;DR: In this paper, the authors identify an instance-dependent functional that controls the difficulty of estimating optimal value functions for a discounted Markov decision process with discrete states and actions, and show that this functional arises in lower bounds on the accuracy on any estimation procedure.
Abstract: Various algorithms in reinforcement learning exhibit dramatic variability in their convergence rates and ultimate accuracy as a function of the problem structure. Such instance-specific behavior is not captured by existing global minimax bounds, which are worst-case in nature. We analyze the problem of estimating optimal $Q$-value functions for a discounted Markov decision process with discrete states and actions and identify an instance-dependent functional that controls the difficulty of estimation in the $\ell_\infty$-norm. Using a local minimax framework, we show that this functional arises in lower bounds on the accuracy on any estimation procedure. In the other direction, we establish the sharpness of our lower bounds, up to factors logarithmic in the state and action spaces, by analyzing a variance-reduced version of $Q$-learning. Our theory provides a precise way of distinguishing "easy" problems from "hard" ones in the context of $Q$-learning, as illustrated by an ensemble with a continuum of difficulty.

2 citations

Proceedings Article
06 Dec 2021
TL;DR: In this article, a novel deep actor-critic framework, Tactical Optimistic and Pessimistic (TOP) estimation, is introduced, which switches between optimistic and pessimistic value learning online.
Abstract: In recent years, deep off-policy actor-critic algorithms have become a dominant approach to reinforcement learning for continuous control. One of the primary drivers of this improved performance is the use of pessimistic value updates to address function approximation errors, which previously led to disappointing performance. However, a direct consequence of pessimism is reduced exploration, running counter to theoretical support for the efficacy of optimism in the face of uncertainty. So which approach is best? In this work, we show that the most effective degree of optimism can vary both across tasks and over the course of learning. Inspired by this insight, we introduce a novel deep actor-critic framework, Tactical Optimistic and Pessimistic (TOP) estimation, which switches between optimistic and pessimistic value learning online. This is achieved by formulating the selection as a multi-arm bandit problem. We show in a series of continuous control tasks that TOP outperforms existing methods which rely on a fixed degree of optimism, setting a new state of the art in challenging pixel-based environments. Since our changes are simple to implement, we believe these insights can easily be incorporated into a multitude of off-policy algorithms.

2 citations

Journal ArticleDOI
TL;DR: The support vector machine (SVM) has played an important role in bringing certain themes to the fore in computationally oriented statistics as discussed by the authors, however, it is important to place the SVM in context as but one part of a class of closely related algorithms for nonlinear classification.
Abstract: The support vector machine (SVM) has played an important role in bringing certain themes to the fore in computationally oriented statistics. However, it is important to place the SVM in context as but one mem ber of a class of closely related algorithms for nonlin ear classification. As we discuss, several of the "open problems" identified by the authors have in fact been the subject of a significant literature, a literature that may have been missed because it has been aimed not only at the SVM but at a broader family of algorithms. Keeping the broader class of algorithms in mind also helps to make clear that the SVM involves certain specific algorithmic choices, some of which have fa vorable consequences and others of which have unfa vorable consequences?both in theory and in practice. The broader context helps to clarify the ties of the SVM to the surrounding statistical literature. We have at least two broader contexts in mind for the

2 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

Journal ArticleDOI
TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Abstract: We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.

30,570 citations

Proceedings Article
03 Jan 2001
TL;DR: This paper proposed a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI).
Abstract: We propose a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams [6], and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI) [3]. In the context of text modeling, our model posits that each document is generated as a mixture of topics, where the continuous-valued mixture proportions are distributed as a latent Dirichlet random variable. Inference and learning are carried out efficiently via variational algorithms. We present empirical results on applications of this model to problems in text modeling, collaborative filtering, and text classification.

25,546 citations