scispace - formally typeset
Search or ask a question
Author

Michael I. Jordan

Other affiliations: Stanford University, Princeton University, Broad Institute  ...read more
Bio: Michael I. Jordan is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Computer science & Inference. The author has an hindex of 176, co-authored 1016 publications receiving 216204 citations. Previous affiliations of Michael I. Jordan include Stanford University & Princeton University.


Papers
More filters
Journal ArticleDOI
01 Oct 2014
TL;DR: In this article, the authors use active learning as an optimization strategy for labeling tasks in crowd-sourced databases to minimize the number of questions asked to the crowd, allowing the applications to scale to much larger datasets at lower costs.
Abstract: Crowd-sourcing has become a popular means of acquiring labeled data for many tasks where humans are more accurate than computers, such as image tagging, entity resolution, and sentiment analysis. However, due to the time and cost of human labor, solutions that rely solely on crowd-sourcing are often limited to small datasets (i.e., a few thousand items). This paper proposes algorithms for integrating machine learning into crowd-sourced databases in order to combine the accuracy of human labeling with the speed and cost-effectiveness of machine learning classifiers. By using active learning as our optimization strategy for labeling tasks in crowd-sourced databases, we can minimize the number of questions asked to the crowd, allowing crowd-sourced applications to scale (i.e., label much larger datasets at lower costs).Designing active learning algorithms for a crowd-sourced database poses many practical challenges: such algorithms need to be generic, scalable, and easy to use, even for practitioners who are not machine learning experts. We draw on the theory of nonparametric bootstrap to design, to the best of our knowledge, the first active learning algorithms that meet all these requirements.Our results, on 3 real-world datasets collected with Amazons Mechanical Turk, and on 15 UCI datasets, show that our methods on average ask 1--2 orders of magnitude fewer questions than the baseline, and 4.5--44× fewer than existing active learning algorithms.

179 citations

Proceedings ArticleDOI
06 Dec 2009
TL;DR: A novel application of using data mining and statistical learning methods to automatically monitor and detect abnormal execution traces from console logs in an online setting and shows that it can not only achieve highly accurate and fast problem detection, but also help operators better understand execution patterns in their system.
Abstract: We describe a novel application of using data mining and statistical learning methods to automatically monitor and detect abnormal execution traces from console logs in an online setting. Different from existing solutions, we use a two stage detection system. The first stage uses frequent pattern mining and distribution estimation techniques to capture the dominant patterns (both frequent sequences and time duration). The second stage use principal component analysis based anomaly detection technique to identify actual problems. Using real system data from a 203-node Hadoop [1] cluster, we show that we can not only achieve highly accurate and fast problem detection, but also help operators better understand execution patterns in their system.

178 citations

Journal ArticleDOI
TL;DR: PGAS provides the data analyst with an off-the-shelf class of Markov kernels that can be used to simulate, for instance, the typically high-dimensional and highly autocorrelated state trajectory in a state-space model.
Abstract: Particle Markov chain Monte Carlo (PMCMC) is a systematic way of combining the two main tools used for Monte Carlo statistical inference: sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). We present a new PMCMC algorithm that we refer to as particle Gibbs with ancestor sampling (PGAS). PGAS provides the data analyst with an off-the-shelf class of Markov kernels that can be used to simulate, for instance, the typically high-dimensional and highly autocorrelated state trajectory in a state-space model. The ancestor sampling procedure enables fast mixing of the PGAS kernel even when using seemingly few particles in the underlying SMC sampler. This is important as it can significantly reduce the computational burden that is typically associated with using SMC. PGAS is conceptually similar to the existing PG with backward simulation (PGBS) procedure. Instead of using separate forward and backward sweeps as in PGBS, however, we achieve the same effect in a single forward sweep. This makes PGAS well suited for addressing inference problems not only in state-space models, but also in models with more complex dependencies, such as non-Markovian, Bayesian nonparametric, and general probabilistic graphical models.

174 citations

Proceedings Article
01 Dec 2004
TL;DR: A probabilistic approach to learning a Gaussian Process classifier in the presence of unlabeled data using a "null category noise model" (NCNM) inspired by ordered categorical noise models.
Abstract: We present a probabilistic approach to learning a Gaussian Process classifier in the presence of unlabeled data. Our approach involves a "null category noise model" (NCNM) inspired by ordered categorical noise models. The noise model reflects an assumption that the data density is lower between the class-conditional densities. We illustrate our approach on a toy problem and present comparative results for the semi-supervised classification of handwritten digits.

174 citations

Book
01 Jan 2003

173 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

Journal ArticleDOI
TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Abstract: We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.

30,570 citations

Proceedings Article
03 Jan 2001
TL;DR: This paper proposed a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI).
Abstract: We propose a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams [6], and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI) [3]. In the context of text modeling, our model posits that each document is generated as a mixture of topics, where the continuous-valued mixture proportions are distributed as a latent Dirichlet random variable. Inference and learning are carried out efficiently via variational algorithms. We present empirical results on applications of this model to problems in text modeling, collaborative filtering, and text classification.

25,546 citations