scispace - formally typeset
Search or ask a question
Author

Michael I. Jordan

Other affiliations: Stanford University, Princeton University, Broad Institute  ...read more
Bio: Michael I. Jordan is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Computer science & Inference. The author has an hindex of 176, co-authored 1016 publications receiving 216204 citations. Previous affiliations of Michael I. Jordan include Stanford University & Princeton University.


Papers
More filters
Proceedings ArticleDOI
15 Dec 2008
TL;DR: This paper proposes several NMF inspired algorithms to solve different data mining problems, including multi-way normalized cut spectral clustering, graph matching of both undirected and directed graphs, and maximal clique finding on both graphs and bipartite graphs.
Abstract: Nonnegative matrix factorization (NMF) is a versatile model for data clustering. In this paper, we propose several NMF inspired algorithms to solve different data mining problems. They include (1) multi-way normalized cut spectral clustering, (2) graph matching of both undirected and directed graphs, and (3) maximal clique finding on both graphs and bipartite graphs. Key features of these algorithms are (a) they are extremely simple to implement; and (b) they are provably convergent. We conduct experiments to demonstrate the effectiveness of these new algorithms. We also derive a new spectral bound for the size of maximal edge bicliques as a byproduct of our approach.

129 citations

Posted Content
TL;DR: The Bag of Little Bootstraps (BLB), a new procedure which incorporates features of both the bootstrap and subsampling to obtain a robust, computationally efficient means of assessing estimator quality, is presented.
Abstract: The bootstrap provides a simple and powerful means of assessing the quality of estimators. However, in settings involving large datasets, the computation of bootstrap-based quantities can be prohibitively demanding. As an alternative, we present the Bag of Little Bootstraps (BLB), a new procedure which incorporates features of both the bootstrap and subsampling to obtain a robust, computationally efficient means of assessing estimator quality. BLB is well suited to modern parallel and distributed computing architectures and retains the generic applicability, statistical efficiency, and favorable theoretical properties of the bootstrap. We provide the results of an extensive empirical and theoretical investigation of BLB's behavior, including a study of its statistical correctness, its large-scale implementation and performance, selection of hyperparameters, and performance on real data.

128 citations

Posted Content
TL;DR: In this article, it was shown that first-order methods avoid saddle points for almost all initializations, and that neither access to second-order derivative information nor randomness beyond initialization is necessary to provably avoid saddle point.
Abstract: We establish that first-order methods avoid saddle points for almost all initializations. Our results apply to a wide variety of first-order methods, including gradient descent, block coordinate descent, mirror descent and variants thereof. The connecting thread is that such algorithms can be studied from a dynamical systems perspective in which appropriate instantiations of the Stable Manifold Theorem allow for a global stability analysis. Thus, neither access to second-order derivative information nor randomness beyond initialization is necessary to provably avoid saddle points.

128 citations

Journal ArticleDOI
TL;DR: In this article, the covariates are not available directly but are transformed by a dimensionality-reducing quantizer, and conditions on loss functions such that empirical risk minimization yields Bayes consistency when both the discriminant function and the quantizer are estimated.
Abstract: The goal of binary classification is to estimate a discriminant function y from observations of covariate vectors and corresponding binary labels. We consider an elaboration of this problem in which the covariates are not available directly but are transformed by a dimensionality-reducing quantizer Q. We present conditions on loss functions such that empirical risk minimization yields Bayes consistency when both the discriminant function and the quantizer are estimated. These conditions are stated in terms of a general correspondence between loss functions and a class of functionals known as Ali-Silvey or /-divergence functionals. Whereas this correspondence was established by Blackwell [Proc. 2nd Berkeley Symp. Probab. Statist. 1 (1951) 93-102. Univ. California Press, Berkeley] for the 0-1 loss, we extend the correspondence to the broader class of surrogate loss functions that play a key role in the general theory of Bayes consistency for binary classification. Our result makes it possible to pick out the (strict) subset of surrogate loss functions that yield Bayes consistency for joint estimation of the discriminant function and the quantizer.

127 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

Journal ArticleDOI
TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Abstract: We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.

30,570 citations

Proceedings Article
03 Jan 2001
TL;DR: This paper proposed a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI).
Abstract: We propose a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams [6], and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI) [3]. In the context of text modeling, our model posits that each document is generated as a mixture of topics, where the continuous-valued mixture proportions are distributed as a latent Dirichlet random variable. Inference and learning are carried out efficiently via variational algorithms. We present empirical results on applications of this model to problems in text modeling, collaborative filtering, and text classification.

25,546 citations