scispace - formally typeset
M

Michael I. Jordan

Researcher at University of California, Berkeley

Publications -  1110
Citations -  241763

Michael I. Jordan is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Computer science & Inference. The author has an hindex of 176, co-authored 1016 publications receiving 216204 citations. Previous affiliations of Michael I. Jordan include Stanford University & Princeton University.

Papers
More filters
Proceedings ArticleDOI

Multiple kernel learning, conic duality, and the SMO algorithm

TL;DR: Experimental results are presented that show that the proposed novel dual formulation of the QCQP as a second-order cone programming problem is significantly more efficient than the general-purpose interior point methods available in current optimization toolboxes.
Proceedings Article

Deep transfer learning with joint adaptation networks

TL;DR: JAN as mentioned in this paper aligns the joint distributions of multiple domain-specific layers across domains based on a joint maximum mean discrepancy (JMMD) criterion to make the distributions of the source and target domains more distinguishable.
Posted Content

Loopy Belief Propagation for Approximate Inference: An Empirical Study

TL;DR: In this article, the authors compare the performance of loopy belief propagation with the exact ones in four real world networks, including two real-world networks: ALARM and QMR, and find that the loopy beliefs often converge and when they do, they give a good approximation to the correct marginals.
Proceedings Article

Loopy belief propagation for approximate inference: an empirical study

TL;DR: This paper compares the marginals computed using loopy propagation to the exact ones in four Bayesian network architectures, including two real-world networks: ALARM and QMR, and finds that the loopy beliefs often converge and when they do, they give a good approximation to the correct marginals.
Journal ArticleDOI

Variational Inference for Dirichlet Process Mixtures

TL;DR: A variational inference algorithm forDP mixtures is presented and experiments that compare the algorithm to Gibbs sampling algorithms for DP mixtures of Gaussians and present an application to a large-scale image analysis problem are presented.